Sunday, September 21, 2025

Purpose-Flux Belt Theory (PFBT) - Appendices A-I

 https://chatgpt.com/share/68d01c46-60bc-8010-9272-c028d06eb8c2

https://osf.io/yaz5u/files/osfstorage/68d01dd47195bb99223b7dfe 

Purpose-Flux Belt Theory (PFBT) 
- Appendices A-I

 

Appendix A — Notation & Orientation Cheats (production notes)

Below is the compact, print-ready “cheat sheet” for symbols, orientations, and sign conventions used throughout PFBT. A matching set of vector diagrams is included here: Download the diagrams (PDF).

A.1 Objects & Symbols (one-glance table)

  • Belt / worldsheet: B\mathcal B, an oriented surface with two boundary traces.

  • Boundary (plan vs do): B=Γ+(Γ)\partial\mathcal B=\Gamma_+\sqcup(-\Gamma_-).

  • Purpose connection (estimable field): AΠ\mathcal A_\Pi.

  • Curvature (drives macro work): FΠ=dAΠ+AΠAΠ\mathcal F_\Pi=d\mathcal A_\Pi+\mathcal A_\Pi\wedge\mathcal A_\Pi.

  • Holonomy along a trace: Hol(Γ)=Pexp ⁣ΓAΠ\mathrm{Hol}(\Gamma)=\mathcal{P}\exp\!\oint_\Gamma \mathcal A_\Pi (non-abelian), or ΓAΠ\oint_\Gamma \mathcal A_\Pi (abelianized ops layer).

  • Twist (framing/governance steps): Tw\mathrm{Tw}; coupling α\alpha.

  • Purpose Belt Holonomy Law (PBHL):

    Γ+ ⁣AΠΓ ⁣AΠ  =  B ⁣FΠ  +  αTw.\oint_{\Gamma_+}\!\mathcal A_\Pi-\oint_{\Gamma_-}\!\mathcal A_\Pi \;=\;\iint_{\mathcal B}\!\mathcal F_\Pi\;+\;\alpha\,\mathrm{Tw}.

    (“Gap = Flux + Twist.”)

A.2 Orientation & Stokes-on-Belts

  • Positive loop orientation is counterclockwise (CCW) with respect to the chosen unit normal n\mathbf n (right-hand rule).

  • On a belt, Γ+\Gamma_+ inherits the forward boundary orientation; Γ\Gamma_- is reversed (minus sign in B\partial \mathcal B).

  • Stokes (two-boundary form): the edge gap equals surface flux + twist (PBHL above).

  • Units sanity: the left side (edge integrals) and the right side (surface flux + twist term) must carry the same operational units after the book’s mapping to domain outputs.

A.3 Gluing & Cancellation

  • When two belts B1,B2\mathcal B_1,\mathcal B_2 are glued along a shared interior edge with opposite orientations, that interior edge’s contributions cancel. Fluxes add:

    B1B2 ⁣FΠ=B1 ⁣FΠ+B2 ⁣FΠ.\iint_{\mathcal B_1\cup \mathcal B_2}\!\mathcal F_\Pi = \iint_{\mathcal B_1}\!\mathcal F_\Pi + \iint_{\mathcal B_2}\!\mathcal F_\Pi.
  • Production note: keep all internal (glued) edges visible in debug prints; hide them in final figures once sign checks pass.

A.4 Twist Sign Convention (governance/framing)

  • Positive Tw\mathrm{Tw} means the local moving frame rotates CCW when viewed along +n+\mathbf n.

  • Discrete policy/prompt/version steps contribute signed twist increments; the scalar α\alpha controls how strongly twist impacts the gap.

  • Pitfall to avoid: flipping the normal n\mathbf n without also flipping loop orientation will invert the sign of Tw\mathrm{Tw} unexpectedly.

A.5 Discrete Belts: Mesh Orientation

  • Each cell (face) is oriented CCW relative to n\mathbf n; edges inherit consistent directions.

  • Edge integrals are accumulated with their local orientation; shared edges between cells cancel in the interior sum.

  • Quadrature: use the same node ordering across cells to avoid sign drift; see Part IV for the error model.

A.6 4π Periodicity (Dirac belt trick, test harness)

  • A 2π2\pi frame rotation is not homotopic to identity on the belt; 4π4\pi is.

  • Regression test: numeric holonomy should exhibit 4π invariance within tolerance (see Ch. 9 & Ch. 43).

  • Production tip: keep a canned “belt-trick” scene to validate renderer and sign conventions after any codegen change.

A.7 Ledger Signs (macro work & entropy)

  • Macro work WmacroW_{\text{macro}} (in domain units) is proportional to an inner product of flux with the purpose-current JΠJ_\Pi:

    Wmacro    B ⁣FΠ,  JΠ.W_{\text{macro}} \;\propto\; \iint_{\mathcal B}\!\langle \mathcal F_\Pi,\; J_\Pi\rangle.

    Positive WmacroW_{\text{macro}} indicates productive closure of the plan–do gap in the chosen output units (e.g., pairs of shoes).

  • Macro entropy Σmacro\Sigma_{\text{macro}} accumulates dispersion, WIP age, rework, and twist costs; it increases with misalignment and excessive framing changes.

  • Conservation view: if the gap closes with minimal Tw\mathrm{Tw} and low dispersion, expect high entropy-efficiency (Part VII KPIs).

A.8 One-page sanity checks (use before any run)

  1. Boundary sign test: B\partial\mathcal B prints as Γ+\Gamma_+ (forward) and Γ-\Gamma_- (reversed).

  2. Stokes parity: numeric Γ+Γ\oint_{\Gamma_+}-\oint_{\Gamma_-} ≈ surface flux +αTw+\alpha \mathrm{Tw} (tolerance per Ch. 8).

  3. Gluing: shared interior edges cancel to machine epsilon.

  4. Tw direction: flipping n\mathbf n flips Tw\mathrm{Tw} and loop orientation together, leaving PBHL invariant.

  5. 4π test: 2π2\pi rotation changes class; 4π4\pi returns to identity class.

  6. Units: LHS edge units = RHS flux/twist units after mapping to outputs; the ledger closes.


Diagrams
Use the linked PDF for clean, B/W, vector figures that match this appendix:

  • Fig A1 — Two-Boundary Belt, Orientation & Normal

  • Fig A2 — Belt Stokes: Gap = Flux + Twist

  • Fig A3 — Gluing Two Belts: Interior Edge Cancels

  • Fig A4 — Twist (Tw) Sign Convention

  • Fig A5 — Discrete Belts: Cell Orientation & Edge Consistency

  • Fig A6 — 4π Periodicity (Dirac Belt Trick)

  • Fig A7 — Dual Traces: Plan (Γ+\Gamma_+) vs Do (Γ\Gamma_-)

Download the diagrams (PDF)

 

Appendix B — Proof Sketches (production notes)

Margin tags like [BHI §x.y] and [AGI-Mini Ch.z] refer to your two attached manuscripts:
BHI = Belt Holonomy Is Inevitable; AGI-Mini = Belt Theory for AGI — A Mini-Textbook.
Use these tags in the page margin for quick traceability in the print layout.


B.0 Setup & Conventions

  • Belt/worldsheet: an oriented surface B\mathcal B with boundary
    B=Γ+(Γ)\partial\mathcal B=\Gamma_+\sqcup(-\Gamma_-) (plan vs do). The unit normal is n\mathbf n (Appendix A).

  • Purpose connection: AΠ\mathcal A_\Pi on B\mathcal B (Lie-algebra valued for the full theory; scalar 1-form in the abelian ops layer).

  • Curvature: FΠ=dAΠ+AΠAΠ\mathcal F_\Pi = d\mathcal A_\Pi + \mathcal A_\Pi\wedge \mathcal A_\Pi.

  • Twist (framing): Tw\mathrm{Tw} is the signed rotation of a chosen boundary frame when viewed along +n+\mathbf n; coupling α\alpha weights framing cost/impact.

  • Wilson/holonomy: Hol(Γ)=Pexp ⁣ΓAΠ\mathrm{Hol}(\Gamma)=\mathcal P\exp\!\oint_\Gamma \mathcal A_\Pi.
    Class functions (e.g., trace, argdet\arg\det) give gauge-invariant scalars.


B.1 Purpose Belt Holonomy Law (PBHL)

Statement (non-abelian form)

Hol(Γ+)  Hol(Γ)1=  Sexp ⁣ ⁣B ⁣W1FΠW    eiαTw\boxed{\quad \mathrm{Hol}(\Gamma_+)\;\mathrm{Hol}(\Gamma_-)^{-1} =\;\mathcal S\,\exp\!\!\iint_{\mathcal B}\! W^{-1}\,\mathcal F_\Pi\,W \;\cdot\; e^{\,i\,\alpha\,\mathrm{Tw}} \quad}

Here WW parallel-transports surface points to a reference, S\mathcal S denotes surface ordering.
Abelian operational form (used for KPIs/ledgers):

Γ+ ⁣AΠ    Γ ⁣AΠ=  B ⁣FΠ  +  αTw\boxed{\quad \oint_{\Gamma_+}\!\mathcal A_\Pi\;-\;\oint_{\Gamma_-}\!\mathcal A_\Pi =\;\iint_{\mathcal B}\!\mathcal F_\Pi\;+\;\alpha\,\mathrm{Tw} \quad}

This is the canonical Gap = Flux + Twist identity.

Proof sketch

  1. Two-boundary Stokes (non-abelian): Apply the non-abelian Stokes theorem on B\mathcal B with B=Γ+(Γ)\partial\mathcal B=\Gamma_+\cup(-\Gamma_-), producing a relation between the product of edge holonomies and the surface-ordered exponential of curvature. The minus sign on Γ\Gamma_- yields the inverse holonomy.
    Margin tags: [BHI §2.1–2.3], [AGI-Mini Ch.12–13].

  2. Framing insertion: The surface proof assumes a reference framing; changing boundary framing by Δθ\Delta\theta multiplies the edge operator by a phase (abelian) or by a central element (non-abelian). Aggregating local frame rotations along the boundary yields exp(iαTw)\exp(i\,\alpha\,\mathrm{Tw}), with α\alpha fixed by units and the chosen class function.
    Margin tags: [BHI §2.4], [AGI-Mini Ch.13 “twist coupling”].

  3. Abelian reduction: In the operations layer, replace P\mathcal P and S\mathcal S by ordinary integrals; Stokes gives BAΠ=BdAΠ\oint_{\partial\mathcal B}\mathcal A_\Pi=\iint_{\mathcal B} d\mathcal A_\Pi. Identify dAΠd\mathcal A_\Pi with FΠ\mathcal F_\Pi, add the αTw\alpha\,\mathrm{Tw} boundary contribution.
    Margin tags: [AGI-Mini Ch.13 eq.(1)].

  4. Gauge invariance: Taking a class function (e.g., argdet\arg\det, trace/character) makes both sides gauge-invariant. The twist term is framing-gauge invariant by construction.
    Margin tags: [BHI §2.5].


B.2 Two-Boundary Stokes and Gauss-type Identities

Stokes on belts (orientation-aware)

For a smooth 1-form AΠ\mathcal A_\Pi,

Γ+ ⁣AΠΓ ⁣AΠ=B ⁣AΠ=B ⁣dAΠ.\oint_{\Gamma_+}\!\mathcal A_\Pi - \oint_{\Gamma_-}\!\mathcal A_\Pi = \oint_{\partial\mathcal B}\!\mathcal A_\Pi = \iint_{\mathcal B}\! d\mathcal A_\Pi .

Replacing dAΠd\mathcal A_\Pi by FΠ\mathcal F_\Pi recovers the PBHL without framing.
Key orientation step: Γ\Gamma_- appears with a minus sign in B\partial\mathcal B, hence the subtraction.
Margin tags: [BHI §1.3], [AGI-Mini Ch.12].

Gauss-type work/entropy balance

Introduce a purpose current JΠJ_\Pi (a constitutive map from context/state to an intensive that “responds” to curvature). The macro work over B\mathcal B is

Wmacro    B ⁣FΠ,  JΠ.W_{\text{macro}} \;\propto\; \iint_{\mathcal B}\!\langle \mathcal F_\Pi,\; J_\Pi\rangle .

If JΠ=χFΠJ_\Pi = \chi\,\star \mathcal F_\Pi (local linear response with χ\chi a compliance tensor), then

Wmacro    B ⁣FΠχ2  0,W_{\text{macro}} \;\propto\; \iint_{\mathcal B}\!\|\mathcal F_\Pi\|_\chi^2 \;\ge 0,

establishing non-negativity under passive control. Deviations (active control, twist steps) appear as boundary work via PBHL’s edge gap and the αTw\alpha\,\mathrm{Tw} term.
Margin tags: [AGI-Mini Ch.13 “work–entropy ledger”].

Discrete proof (mesh)

Tiling B=kk\mathcal B=\bigcup_k \square_k with CCW faces (Appendix A), Stokes per face gives

kk ⁣AΠ  =  kk ⁣FΠ.\sum_k \oint_{\partial \square_k}\!\mathcal A_\Pi \;=\; \sum_k \iint_{\square_k}\!\mathcal F_\Pi .

All interior edges cancel by opposite orientations; only Γ+(Γ)\Gamma_+\cup(-\Gamma_-) remains. This is the computational backbone for the numerics in Part IV/VIII.
Margin tags: [BHI §1.4], [AGI-Mini Ch.8].


B.3 Framing Quantization & 4π Periodicity

White–Fuller ribbon relation (conceptual reminder)

For a closed ribbon, linking LkLk decomposes into twist + writhe: Lk=Tw+WrLk = \mathrm{Tw} + \mathrm{Wr}. Under smooth deformations that keep the ribbon closed and non-self-intersecting, LkZLk\in\mathbb Z is invariant. Hence Tw\mathrm{Tw} shifts by integers when Wr\mathrm{Wr} changes continuously—observable twist is effectively quantized at the level of topological class.
Operational reading: governance/frame changes accumulate in integer steps when we require global closure and no tearing.
Margin tags: [BHI §2.6].

SU(2) double cover and 4π

The belt’s frame lives in SO(3)SO(3), whose universal cover is SU(2)SU(2). A 2π2\pi rotation maps to ISU(2)-\mathbb I\in SU(2), not the identity; a 4π4\pi rotation maps to I\mathbb I. Therefore, class functions built from representations (e.g., traces/characters) are 4π4\pi-periodic, not 2π2\pi. In practice:

  • Numeric holonomy must pass a 4π periodicity test (Appendix A, Fig A6; Ch.9, Ch.43).

  • Edge-case: if you abelianize too early, you may mistakenly enforce 2π2\pi periodicity—this is a known failure mode.
    Margin tags: [AGI-Mini Ch.9, Ch.26], [BHI §2.7].

Twist coupling α\alpha and quantization

When class functions are used, the twist contribution enters as eiαTwe^{i\,\alpha\,\mathrm{Tw}}. To respect 4π periodicity, α\alpha must be chosen so that αTw\alpha\,\mathrm{Tw} changes by integer multiples of 2π2\pi when the frame does a full 4π4\pi return in SO(3)SO(3). In the abelian ops layer, this reduces to enforcing ledger invariance under allowed frame homotopies.
Margin tags: [AGI-Mini Ch.13 “twist term”].


B.4 Minimal Variational View (gap functional)

Define a gap functional on belts:

G[AΠ,Tw;B]=(Γ+ ⁣AΠΓ ⁣AΠ)B ⁣FΠαTw.\mathcal G[\mathcal A_\Pi,\mathrm{Tw};\mathcal B] =\left(\oint_{\Gamma_+}\!\mathcal A_\Pi-\oint_{\Gamma_-}\!\mathcal A_\Pi\right) -\iint_{\mathcal B}\!\mathcal F_\Pi - \alpha\,\mathrm{Tw}.

Stationarity under compactly supported variations δAΠ\delta\mathcal A_\Pi on B\mathcal B yields dAΠ=FΠd\mathcal A_\Pi=\mathcal F_\Pi (compatibility) and δG=0\delta\mathcal G=0\Rightarrow PBHL. Interpreting G=0\mathcal G=0 as a closure constraint, controllers in Part V/VI act to drive G0\mathcal G\to 0 by either flux-gating (alter FΠ\mathcal F_\Pi) or twist-stepping (alter Tw\mathrm{Tw}).
Margin tags: [AGI-Mini Ch.15 “controllers as gap minimizers”].


B.5 Production Checklists & Unit Tests

  1. Sign test: Verify Γ+Γ=BFΠ\oint_{\Gamma_+}-\oint_{\Gamma_-} = \iint_{\mathcal B}\mathcal F_\Pi on synthetic fields with zero twist.
    Tags: [AGI-Mini Ch.8], [BHI §1.3].

  2. Framing test: Apply a known boundary frame rotation Δθ\Delta\theta; confirm gap shift =αΔθ=\alpha\,\Delta\theta (abelian).
    Tags: [BHI §2.4].

  3. Gluing test: Split a belt into tiles; ensure interior edge cancellation to machine epsilon.
    Tags: [AGI-Mini Ch.8].

  4. 4π test: Rotate the frame by 00, 2π2\pi, 4π4\pi; confirm class-function invariants change only between 00 and 2π2\pi but return at 4π4\pi.
    Tags: [AGI-Mini Ch.26], [BHI §2.7].

  5. Ledger closure: With JΠ=χFΠJ_\Pi=\chi\,\star \mathcal F_\Pi, confirm Wmacro0W_{\text{macro}}\ge 0 and PBHL closes the budget within tolerance.
    Tags: [AGI-Mini Ch.13].


B.6 Common Failure Modes (with fixes)

  • 2π vs 4π confusion: Using abelian scalars for class functions—fix by computing invariants from an SU(2)SU(2) (or appropriate) representation.

  • Orientation drift on meshes: Mismatched face ordering—fix by enforcing CCW faces and consistent local edge directions (Appendix A, Fig A5).

  • Framing leakage: Counting writhe into Tw\mathrm{Tw} in the ledger—fix by separating intrinsic twist from geometric writhe or by using a gauge where writhe is absorbed into the surface term.

  • Gauge-variant KPIs: Mixing raw holonomies with non-class features—fix by using class functions (trace/character, argdet\arg\det) or by pinning a base frame.


B.7 Editor’s Margin Tags (style guide)

  • Use [BHI §x.y] for geometric/field-theoretic steps (holonomy, non-abelian Stokes, framing).

  • Use [AGI-Mini Ch.z] for operations-layer reductions, KPIs, controllers, and test harnesses.

  • When a result depends on both (e.g., PBHL with twist), list both tags in ascending order: [BHI §2.3; AGI-Mini Ch.13].


End of Appendix B

 

Appendix C — Computational Reference (production notes)

This appendix gives “drop-in” numerical recipes for implementing PFBT on belts (twinned traces with an oriented worldsheet). It specifies mesh choices, quadrature rules, error/complexity models, and robust defaults/heuristics for production use.


C.0 Scope & Data Model

  • Worldsheet (belt): a 2-D oriented surface B\mathcal B with boundary B=Γ+(Γ)\partial \mathcal B=\Gamma_+\sqcup(-\Gamma_-).

  • Field data: purpose connection AΠ\mathcal A_\Pi (1-form; scalar for the abelian ops layer, matrix-valued for non-abelian); curvature FΠ\mathcal F_\Pi (2-form).

  • Discretization: piecewise polynomial (usually bilinear/biquadratic) over cells; edge traces carry 1-D quadrature nodes, faces carry 2-D nodes.

  • Outputs: edge gap, surface flux, twist, and ledger terms; plus invariants & tests (4π periodicity, gluing).


C.1 Mesh Recipes (choose one)

R1. Structured Quad Mesh (recommended default)

  • Topology: Nx×NyN_x\times N_y rectangles mapped from [0,1]2B[0,1]^2\to\mathcal B.

  • Orientation: cells CCW w.r.t. +n+\mathbf n; edges inherit consistent directions (Appendix A).

  • Use when: geometry is ribbon-like or admits a smooth chart; best for reproducibility, caching, SIMD.

R2. Tensor-Product Curvilinear

  • Topology: same as R1, but node positions follow a smooth mapping that hugs curvature features.

  • Use when: FΠ\|\nabla \mathcal F_\Pi\| varies strongly; enables cell size grading without hanging nodes.

R3. Triangular Mesh (hybrid or unstructured)

  • Topology: Delaunay or advancing-front; optional quad–tri hybrid for boundary fidelity.

  • Use when: geometry is irregular; pair with triangle rules (Dunavant/Kronrod–Patterson).

Recipe notes

  • Keep aspect ratio <10:1< 10{:}1 for quads unless using anisotropic quadrature (C.3).

  • Avoid T-junctions in production; if unavoidable, enforce local re-orientation fixups and edge sum tests (C.8).


C.2 Boundary Integrals (edge holonomies)

Abelian ops layer

Γ ⁣AΠ    eΓ  i=1q1wiAΠ ⁣(e(ξi))e(ξi),\oint_{\Gamma}\!\mathcal A_\Pi \;\approx\; \sum_{e\in\Gamma}\;\sum_{i=1}^{q_1} w_i \, \mathcal A_\Pi\!\bigl(\ell_e(\xi_i)\bigr)\,\|\ell_e'(\xi_i)\|,

with e:[1,1]e\ell_e:[-1,1]\to e a local chart.

Non-abelian

  • Discretize the ordered exponential via Magnus Ω2\Omega_2 (stable, second-order) or BCH stepper on sub-segments; cache small-matrix exponentials.

  • Compose in edge direction; for Γ\Gamma_- flip direction or invert the result.

1-D quadrature defaults (per edge)

Rule Points q1q_1 Degree exact Notes
Gauss–Legendre 2 3 Fast, default
Gauss–Legendre 4 7 Use when curvature varies along edge
Simpson 3 3 Useful with uniform node storage
GL Adaptive 2→8 Trigger on residuals > tol1_1

C.3 Surface Flux (face integrals)

Abelian ops layer

B ⁣FΠ    Kcells  i,jWijFΠ ⁣(ΦK(ξi,ηj))detDΦK.\iint_{\mathcal B}\!\mathcal F_\Pi \;\approx\; \sum_{K\in\text{cells}}\;\sum_{i,j} W_{ij}\, \mathcal F_\Pi\!\bigl(\Phi_K(\xi_i,\eta_j)\bigr)\,\bigl|\det D\Phi_K\bigr| .

Non-abelian (surface-ordered)

  • Use cellwise adjoint transport: pick a face root, transport samples with a precomputed connection estimate WW, then apply a surface-ordered exp ⁣F\exp\!\int F via Magnus Ω2\Omega_2 over sub-patches.

  • In production ops, the abelianized flux is typically sufficient; reserve non-abelian for research or when 4π tests are sensitive to ordering.

2-D quadrature defaults (rectangles)

Rule Nodes Degree exact Notes
Tensor GL 2×22\times2 4 3 Default
Tensor GL 3×33\times3 9 5 Use for rough fields
Tensor GL 4×44\times4 16 7 High accuracy pass

Triangles (if using R3)

Rule Points Degree exact
Dunavant-1 1 1
Dunavant-3 3 2
Dunavant-7 7 5
  • Prefer Dunavant-7 for final runs; fall back to 3-point for previews.


C.4 Discrete Twist (framing)

  • Represent boundary frame as tangent–normal pair (t,f)(\mathbf t,\mathbf f) sampled at edge nodes.

  • Signed twist increment per edge segment: Δθ=atan2 ⁣(det[fk,fk+1],fk ⁣ ⁣fk+1)\Delta\theta = \operatorname{atan2}\!\bigl(\det[\mathbf f_k,\mathbf f_{k+1}],\,\mathbf f_k\!\cdot\!\mathbf f_{k+1}\bigr).

  • Total Tw=Δθ\mathrm{Tw}=\sum \Delta\theta along Γ+\Gamma_+ minus Γ\Gamma_- (respecting orientations).

  • Coupling: add αTw\alpha\,\mathrm{Tw} to the edge gap per PBHL; α\alpha chosen to satisfy 4π invariance tests (Appendix B).


C.5 Error Model & Acceptance

For smooth fields and mesh size h=max(hx,hy)h=\max(h_x,h_y), belt width parameter ww (if used), curvature scale κ\kappa,

ε    C1hp  +  C2(κw)2  +  C3FΠw2.\varepsilon \;\lesssim\; C_1\,h^p \;+\; C_2\,(\kappa w)^2 \;+\; C_3\,\|\nabla_\perp \mathcal F_\Pi\|\,w^2 .
  • pp = min(poly degree+1, quadrature degree).

  • The C2,C3C_2,C_3 terms capture thickness/modeling and transverse variation penalties.

Practical tolerances

  • Unit PBHL: Gap(Flux+αTw)τPBHL|\text{Gap}-(\text{Flux}+\alpha\,\mathrm{Tw})| \le \tau_{\mathrm{PBHL}} with τPBHL[106,103]\tau_{\mathrm{PBHL}}\in[10^{-6},10^{-3}] in natural units of the edge integral.

  • Gluing: interior edge residuals τglue=1010\le \tau_{\mathrm{glue}}=10^{-10} (double).

  • 4π: invariants equal within τ4π\tau_{4\pi} (same band as PBHL).


C.6 Complexity & Memory

Let EE edges, FF faces, q1q_1 1-D nodes/edge, q2q_2 2-D nodes/face, dRd_R rep. dimension (1 for abelian).

  • Abelian cost:

    • Edges: O(Eq1)\mathcal O(E\,q_1)

    • Faces: O(Fq2)\mathcal O(F\,q_2)

  • Non-abelian:

    • Add matrix exponentials and products: O(Eq1dR3+Fq2dR3)\mathcal O\bigl(E\,q_1\,d_R^3 + F\,q_2\,d_R^3\bigr) (small dRd_R: fast; cache exp/log).

  • Memory: store fields at nodes + Jacobians + optional transport WW: O(Eq1+Fq2)\mathcal O(E\,q_1 + F\,q_2).


C.7 Defaults (safe, reproducible)

  • Mesh: Structured quads, Nx×NyN_x\times N_y with Nx/NyN_x/N_y\approx belt aspect; start Nx=128,Ny=32N_x=128, N_y=32.

  • Quadrature: Edges GL-2; Faces tensor GL 3×33\times3.

  • Twist: central differences for frames; unwrap angles; enforce continuity at joins.

  • PBHL checks: enable on every run; fail fast if tolerance breaks.

  • Precision: double (64-bit) throughout; Kahan summation for edge sums in abelian mode.

  • Non-abelian mode: Magnus Ω2\Omega_2 stepper; cached expm for 2×22{\times}2 or 3×33{\times}3 blocks.


C.8 Heuristics & Adaptivity

  • Edge residual trigger: compare GL-2 vs GL-4; if Δ>τedge|\Delta|>\tau_{\text{edge}}, split edge or raise q1q_1.

  • Face residual trigger: compare 2×22\times2 vs 3×33\times3; if Δ>τface|\Delta|>\tau_{\text{face}}, refine cell or raise q2q_2.

  • Field-aware grading: refine where FΠ\|\nabla \mathcal F_\Pi\| is large or where twist increments spike.

  • Anisotropy: if curvature stripes align with x^\hat x, prefer hx<hyh_x<h_y and higher q1q_1 along stripes.

  • Stability: cap subsegment condition number in Magnus; if AΠΔs>γ \|\mathcal A_\Pi\|\,\Delta s > \gamma, sub-divide (e.g. γ=0.5\gamma=0.5).

  • Smoothing: light Laplacian smoothing on frame samples before Tw\mathrm{Tw} to suppress numerical noise (do not smooth FΠ\mathcal F_\Pi used for validation).


C.9 Diagnostics & Reproducibility

  • Orientation audit: draw tiny arrows on a random 2% subset of edges; ensure CCW faces (Appendix A, Fig A5).

  • Interior cancellation: sum edge contributions per cell; shared edges must cancel to τglue\le \tau_{\mathrm{glue}}.

  • Parity flips: flipping n\mathbf n must flip loop orientations and Tw\mathrm{Tw} sign, leaving PBHL unchanged.

  • Seeded runs: fix RNG seeds for any adaptive decisions; store mesh & quadrature JSON in the artifact.

  • Logs: persist (Gap, Flux, Tw, PBHL residual) per belt, plus node counts and timing; include class-function invariants for 4π suite.


C.10 Pseudocode Skeleton (abelian default)

Inputs: belt geometry B, connection samples Aπ(x), frame samples f(x), α, tolerances
Mesh ← StructuredQuads(B, Nx, Ny)
EdgeRule ← GL(2); FaceRule ← TensorGL(3,3)

# Edge integrals on Γ+ and Γ−
I_plus  ← 0
for e in edges(Γ+):
  I_plus += Quad1D(e, EdgeRule, Aπ • dl)

I_minus ← 0
for e in edges(Γ−):
  I_minus += Quad1D(e, EdgeRule, Aπ • dl)

# Surface flux
Flux ← 0
for K in cells(Mesh):
  Flux += Quad2D(K, FaceRule, Fπ : = dAπ or supplied)

# Twist
Tw ← 0
for e in edges(Γ+):
  Tw += SumAngleIncrements(f along e)
for e in edges(Γ−):
  Tw -= SumAngleIncrements(f along e)   # minus due to orientation

Gap ← I_plus - I_minus
PBHL_resid ← | Gap - (Flux + α*Tw) |
assert PBHL_resid ≤ τ_PBHL

C.11 Quick-Select Table

Scenario Mesh Edge rule Face rule Notes
Production default Structured quads GL-2 GL 3×33{\times}3 Fast, robust
Sharp curvature bands Curvilinear quads GL-4 GL 4×44{\times}4 Raise qq, anisotropic hh
Irregular geometry Triangles GL-3 Dunavant-7 Hybrid ok
Research (non-abelian) Any Magnus Ω2 Magnus on tiles Cache expm; 4π suite on

End of Appendix C

 

Appendix D — Exercises & Mini-Projects (production notes)

Thirty self-contained tasks with solutions & unit-tests organized into five tracks. Each item lists Goal, Given, Task, Deliverables, Solution sketch, Unit tests. Use tolerances and defaults from Appendix C (e.g., τPBHL\tau_{\mathrm{PBHL}}, GL rules, mesh heuristics).


Track I — Foundations: Geometry, PBHL, Invariants (1–6)

1) Belt Orientation Sanity

  • Goal: Verify B=Γ+(Γ)\partial\mathcal B=\Gamma_+\sqcup(-\Gamma_-).

  • Given: Parametric belt Φ(u,v)\Phi(u,v), u[0,1]u\in[0,1] (width), v[0,1]v\in[0,1] (length); normal n\mathbf n.

  • Task: Draw arrows; label Γ±\Gamma_\pm.

  • Deliverables: Diagram + short note.

  • Solution: CCW relative to +n+\mathbf n; Γ\Gamma_- arrow reversed.

  • Unit tests: assert orientation(Γ_plus)==CCW && orientation(Γ_minus)==CW.

2) PBHL (abelian) on a Uniform–Curvature Belt

  • Goal: Show Gap = Flux for α=0\alpha=0.

  • Given: AΠ=(y/2)dx+(x/2)dyFΠ=dxdy\mathcal A_\Pi=(-y/2)\,dx+(x/2)\,dy\Rightarrow \mathcal F_\Pi=dx\wedge dy (unit curvature). Belt area AA.

  • Task: Compute Γ+ ⁣Γ ⁣\oint_{\Gamma_+}\!-\oint_{\Gamma_-}\! and B ⁣FΠ\iint_{\mathcal B}\!\mathcal F_\Pi.

  • Deliverables: One-page derivation.

  • Solution: Flux =1dA=A=\iint 1\,dA=A. Edge gap equals AA. Hence PBHL holds.

  • Unit tests: abs(Gap-Flux) ≤ τ_PBHL.

3) Framing Term Injection

  • Goal: Observe twist contribution.

  • Given: Same as (2) plus boundary frame rotation Δθ\Delta\theta along Γ+\Gamma_+ only, α\alpha known.

  • Task: Recompute gap with framing.

  • Deliverables: Numeric example with Δθ=π/3\Delta\theta=\pi/3.

  • Solution: New gap =A+αΔθ=A+\alpha\,\Delta\theta.

  • Unit tests: abs((Gap-Flux)-α*Tw) ≤ τ_PBHL.

4) Gluing Cancels Interior Edge

  • Goal: Show interior edges vanish when belts glue.

  • Given: Split belt into two sub-belts along a seam with opposite edge orientations.

  • Task: Prove B1B2F=B1F+B2F\iint_{\mathcal B_1\cup\mathcal B_2}\mathcal F=\iint_{\mathcal B_1}\mathcal F+\iint_{\mathcal B_2}\mathcal F.

  • Deliverables: Schematic + line integral sum.

  • Solution: Interior edges cancel term-by-term.

  • Unit tests: sum_interior_edges ≤ τ_glue.

5) 4π Periodicity Check (Class Function)

  • Goal: Demonstrate 4π4\pi (not 2π2\pi) periodicity.

  • Given: Frame represented in SU(2)SU(2) (Pauli matrices); invariant via χ=tr()\chi=\mathrm{tr}(\cdot).

  • Task: Compute holonomy for rotations 0,2π,4π0,2\pi,4\pi.

  • Deliverables: Table of χ\chi values.

  • Solution: 2πI2\pi\mapsto -\mathbf I (trace flips sign), 4πI4\pi\mapsto \mathbf I (trace returns).

  • Unit tests: chi(0)==chi(4π) and chi(2π)==-chi(0).

6) Gauss-type Work Non-Negativity (Passive)

  • Goal: Show Wmacro0W_{\text{macro}}\ge 0 under JΠ=χFΠJ_\Pi=\chi\,\star\mathcal F_\Pi.

  • Given: Compliance tensor χ0\chi\succ0.

  • Task: Prove F,χF0\iint\langle \mathcal F,\chi\,\star\mathcal F\rangle\ge0.

  • Deliverables: Short proof.

  • Solution: Positive-definite quadratic form.

  • Unit tests: Generate random F\mathcal F, SPD χ\chi: W_macro ≥ -1e-12.


Track II — Discretization & Numerics (7–12)

7) Edge Quadrature Convergence

  • Goal: Compare GL-2 vs GL-4 on Γ±\Gamma_\pm.

  • Given: Analytic AΠ\mathcal A_\Pi; belt length LL.

  • Task: Compute edge integrals with both rules.

  • Deliverables: Error vs points plot.

  • Solution: GL-4 reduces error ~ O(h4)O(h^4) for smooth fields.

  • Unit tests: err_GL4 < err_GL2.

8) Surface Flux Accuracy Grid

  • Goal: Show 2×22\times2, 3×33\times3, 4×44\times4 tensor GL scaling.

  • Given: Same field as (2).

  • Task: Flux under each rule vs analytic AA.

  • Deliverables: Table + acceptance.

  • Solution: Errors drop with degree; pick 3×33\times3 default.

  • Unit tests: abs(Flux_3x3 - A) < abs(Flux_2x2 - A).

9) Mesh Aspect Sensitivity

  • Goal: Test error vs aspect ratio.

  • Given: Quads with AR ∈ {2,5,10,20}.

  • Task: Keep DOF fixed; vary AR; measure PBHL residual.

  • Deliverables: Plot residual vs AR.

  • Solution: Residual rises sharply beyond AR≈10.

  • Unit tests: resid(AR=20) > 5*resid(AR=5).

10) Interior Edge Cancellation on Tiles

  • Goal: Validate gluing at machine precision.

  • Given: 8×2 structured tiles.

  • Task: Sum oriented edge integrals per tile; verify cancellations.

  • Deliverables: Residual histogram.

  • Solution: Mean ~ 0, max ≤ τglue\tau_{\mathrm{glue}}.

  • Unit tests: max_interior ≤ τ_glue.

11) Adaptive Edge Refinement Trigger

  • Goal: Implement Δ-test between GL-2 and GL-4.

  • Given: Threshold τedge\tau_{\text{edge}}.

  • Task: Subdivide edges where Δ>τ|\Delta|>\tau.

  • Deliverables: Before/after node counts; PBHL residual change.

  • Solution: Targeted refinement halves PBHL residual.

  • Unit tests: resid_after ≤ 0.5*resid_before.

12) Non-abelian Surface Ordering (Magnus Ω₂)

  • Goal: Compute a small SU(2) flux with ordering.

  • Given: Piecewise constant F=kfkσk\mathcal F=\sum_k f_k \sigma_k on 4 sub-patches.

  • Task: Magnus Ω₂ per patch; compose with parallel transport.

  • Deliverables: Code sketch + invariant trace.

  • Solution: Matches abelian result when [fi,fj]=0[f_i,f_j]=0.

  • Unit tests: When fif_i commute, nonabelian_flux == abelian_flux ± τ.


Track III — Estimation & KPIs (13–18)

13) Estimating AΠ\mathcal A_\Pi from Edge Logs

  • Goal: Reconstruct a scalar 1-form from edge samples.

  • Given: (xk,A(xk))(x_k, A_\parallel(x_k)) along Γ±\Gamma_\pm.

  • Task: Fit local polynomials; extend into belt via Laplace smoothing.

  • Deliverables: Heatmap of A^Π\hat{\mathcal A}_\Pi.

  • Solution: Regularized least squares on edges + harmonic extension.

  • Unit tests: MAE_edge ≤ τ_A and PBHL_close(Â,F̂).

14) Curvature from Sparse Events

  • Goal: Estimate FΠ\mathcal F_\Pi from sparse interior sensors.

  • Given: 20 interior readings F(xi)F(x_i) + smoothness prior.

  • Task: Kriging/GMRF interpolation.

  • Deliverables: F^\hat{\mathcal F} map + uncertainty.

  • Solution: Predictor achieves unbiased flux over belt.

  • Unit tests: abs(∬F̂ - ∬F_true) ≤ 2σ_total.

15) Five-line KPI Computation

  • Goal: Compute (Gap/Flux/Twist/Coherence/Residual) from logs.

  • Given: Dual traces, frame samples, coherence proxy C[0,1]C\in[0,1].

  • Task: Produce KPI row for a run.

  • Deliverables: JSON + dashboard mock.

  • Solution: Residual = Gap − (Flux + αTw).

  • Unit tests: 0 ≤ C ≤ 1 and |resid| ≤ τ_PBHL.

16) Ledger: Macro Work & Macro Entropy

  • Goal: Map to domain units.

  • Given: JΠJ_\Pi, units map U:\mathsf U: field units→“pairs of shoes”.

  • Task: Compute WmacroW_{\text{macro}}, Σmacro\Sigma_{\text{macro}} per Appendix A.

  • Deliverables: One KPI example in domain units.

  • Solution: Inner product + cost dictionary.

  • Unit tests: Units match; Σ_macro ≥ 0.

17) Twist Coupling Calibration α\alpha

  • Goal: Enforce 4π invariance of class-function KPI.

  • Given: Frame experiments at rotations 0,2π,4π0,2\pi,4\pi.

  • Task: Choose α\alpha minimizing variance across 0,4π0,4\pi.

  • Deliverables: Calibration curve.

  • Solution: Solve minαsKPIs(0)KPIs(4π)2\min_\alpha \sum_s \|KPI_s(0)-KPI_s(4\pi)\|^2.

  • Unit tests: KPI(0)≈KPI(4π); KPI(2π) differs.

18) Residual-Triggered Inverse Modeling

  • Goal: When residual >τ>\tau, update JΠJ_\Pi or add hidden flux.

  • Given: High residual runs.

  • Task: Fit ΔJΠ\Delta J_\Pi or latent F~\tilde F minimizing residual.

  • Deliverables: Before/after residuals.

  • Solution: Ridge update; report model delta.

  • Unit tests: resid_after < resid_before and ||Δ|| bounded.


Track IV — Controllers & Stability (19–24)

19) Flux-Gate Controller (Open-loop)

  • Goal: Reduce curvature spikes.

  • Given: Region RR with high F|\mathcal F|.

  • Task: Apply gate u=kFu=-k\,\mathcal F on RR.

  • Deliverables: Residual vs kk.

  • Solution: Optimal kk from line search.

  • Unit tests: resid(k*) < resid(0).

20) Twist-Stepping (Discrete Policy Steps)

  • Goal: Close gap via minimal twist.

  • Given: Candidate steps {Δθj}\{\Delta\theta_j\}.

  • Task: Pick argminjGap(Flux+α(Tw+Δθj))\arg\min_j |Gap-(Flux+\alpha(Tw+\Delta\theta_j))|.

  • Deliverables: Chosen step + new KPI.

  • Solution: Greedy one-step optimality.

  • Unit tests: |new_resid| ≤ |old_resid|.

21) Fast–Slow Loop (Composite Controller)

  • Goal: Combine flux-gate (fast) with twist-step (slow).

  • Given: Two time scales τfτs\tau_f\ll\tau_s.

  • Task: Simulate convergence on drifting F\mathcal F.

  • Deliverables: Residual trace over time.

  • Solution: Tikhonov separation; stable if gains bounded.

  • Unit tests: Residual monotone to tolerance band.

22) Coherence (“神”) as Stabilizer

  • Goal: Show coherence raises robustness margin.

  • Given: Coherence C[0,1]C\in[0,1] modulates gains: kCkk\mapsto Ck.

  • Task: Compare stability regions vs CC.

  • Deliverables: Gain–stability plot.

  • Solution: Higher CC\Rightarrow larger stable set.

  • Unit tests: stable(C_hi) ⊇ stable(C_lo).

23) Controller Goodhart Test

  • Goal: Detect KPI over-optimization that harms ledger.

  • Given: Controller tuned on residual only.

  • Task: Show case where WmacroW_{\text{macro}}\downarrow while residual\downarrow.

  • Deliverables: Counterexample + fix (multi-objective).

  • Solution: Add work weight: minimize resid + λ·work_loss.

  • Unit tests: After fix, resid↓ and work↑ or unchanged.

24) Robustness to Hidden Latent Flux

  • Goal: Controller under unmodeled F~\tilde F.

  • Given: Inject small F~\tilde F in a zone.

  • Task: Track controller output; add observer to estimate F~\tilde F.

  • Deliverables: Residual before/after observer.

  • Solution: Luenberger-style estimator on flux field.

  • Unit tests: resid_after < resid_before with bounded control effort.


Track V — Case Studies & Adversarial (25–30)

25) Manufacturing Line (“Pairs of Shoes”)

  • Goal: End-to-end ledger in domain units.

  • Given: Logs of plan/do traces, WIP age, changeovers, rework counts.

  • Task: Compute WmacroW_{\text{macro}} and Σmacro\Sigma_{\text{macro}}; recommend a twist step.

  • Deliverables: KPI row + policy note.

  • Solution: Map units; choose smallest Δθ\Delta\theta closing gap.

  • Unit tests: Ledger balances within tolerance; inventory cost drops in simulation.

26) Prompt-Ops (LLM) Belt

  • Goal: Detect prompt-injection via flux spike.

  • Given: Rolling F\mathcal F proxy from embedding curvature.

  • Task: Flag anomalies; apply flux-gate.

  • Deliverables: Alert thresholds + before/after curves.

  • Solution: Z-score on F|\mathcal F|; clamp context.

  • Unit tests: ROC ≥ target; false-positive < budget.

27) Policy Flip Stress (Regulatory Change)

  • Goal: Evaluate twist-cost under a sudden policy flip.

  • Given: Δθ=π\Delta\theta=\pi event at t0t_0.

  • Task: Quantify impact on residual and ledger.

  • Deliverables: Post-event KPI; recovery plan.

  • Solution: Multi-step twist to spread cost; temporary flux gate.

  • Unit tests: Recovery to baseline in TT steps with bounded Σmacro\Sigma_{\text{macro}}.

28) Non-abelian Mini—Ribbon Robot

  • Goal: Demonstrate ordering effects.

  • Given: Two curvature patches with [F1,F2]0[F_1,F_2]\neq0.

  • Task: Compare surface orders AB vs BA.

  • Deliverables: Holonomy difference and class functions.

  • Solution: Show non-commuting error term via BCH.

  • Unit tests: invariant_diff(AB,BA) ≥ δ>0.

29) Data Gaps & Reconstruction

  • Goal: Robust KPIs with missing segments.

  • Given: 20% missing on Γ\Gamma_-.

  • Task: Impute via structure (smoothness + symmetry).

  • Deliverables: KPI with uncertainty bands.

  • Solution: GP on edge; widen τPBHL\tau_{\mathrm{PBHL}} via error propagation.

  • Unit tests: Coverage ≥ 90% on synthetic trials.

30) Red-Team Adversary (Twist Poisoning)

  • Goal: Detect malicious micro-framing that keeps residual small but derails work.

  • Given: Sequence of small Δθk\Delta\theta_k causing style drift.

  • Task: Add coherence guard + twist budget.

  • Deliverables: Detector + block rule.

  • Solution: Enforce cumulative twist budget; penalize drift from style anchor.

  • Unit tests: Attack caught within KK steps; post-mitigation work restored.


Unit-Test Template (apply per item)

# PBHL residual
assert abs(Gap - (Flux + α*Tw)) ≤ τ_PBHL

# Interior gluing
assert max(abs(sum_interior_edges)) ≤ τ_glue

# 4π periodicity (class function)
assert approx_equal(class_fn(rot=0), class_fn(rot=4π), tol=τ_4π)
assert not approx_equal(class_fn(rot=0), class_fn(rot=2π), tol=τ_4π)

# Ledger
assert Σ_macro ≥ 0
assert units(LHS) == units(RHS)  # after domain mapping

Production note: Keep a small synthetic suite (items 2, 4, 5, 10, 11, 17) as CI smoke tests; run the full 30-item battery nightly or before major releases.

 

Appendix E — One-Page Quick Start (core equations & steps)

What you’re measuring

  • Belt/worldsheet: oriented surface B\mathcal B with boundary B=Γ+(Γ)\partial\mathcal B=\Gamma_+\sqcup(-\Gamma_-) (plan vs do).

  • Purpose connection (estimable): AΠ\mathcal A_\Pi (1-form).

  • Curvature (does macro work): FΠ=dAΠ+AΠAΠ\mathcal F_\Pi=d\mathcal A_\Pi+\mathcal A_\Pi\wedge\mathcal A_\Pi.

  • Framing/twist: Tw\mathrm{Tw} (signed boundary frame rotation; coupling α\alpha).

  • Purpose current (for work mapping): JΠJ_\Pi (constitutive).

Core identities (keep these on your desk)

  • PBHL (non-abelian):

    Hol(Γ+)Hol(Γ)1=Sexp ⁣ ⁣BW1FΠWeiαTw\mathrm{Hol}(\Gamma_+)\,\mathrm{Hol}(\Gamma_-)^{-1} = \mathcal S\exp\!\!\iint_{\mathcal B} W^{-1}\mathcal F_\Pi W \cdot e^{\,i\alpha\,\mathrm{Tw}}
  • PBHL (operations/abelian layer):

      Γ+ ⁣AΠΓ ⁣AΠ=B ⁣FΠ+αTw  \boxed{\;\oint_{\Gamma_+}\!\mathcal A_\Pi-\oint_{\Gamma_-}\!\mathcal A_\Pi = \iint_{\mathcal B}\!\mathcal F_\Pi + \alpha\,\mathrm{Tw}\;}

    (“Gap = Flux + Twist”)

  • Macro work (domain units):

    Wmacro    B ⁣FΠ,JΠmap via units U to e.g. “pairs of shoes”.W_{\text{macro}}\;\propto\;\iint_{\mathcal B}\!\langle \mathcal F_\Pi,\,J_\Pi\rangle \quad\Longrightarrow\quad \text{map via units }\mathsf U \text{ to e.g. “pairs of shoes”.}
  • Macro entropy (ledger):

    Σmacro=dispersion+WIP-age+rework+twist-cost(αTw)\Sigma_{\text{macro}} = \text{dispersion} + \text{WIP-age} + \text{rework} + \text{twist-cost}(\alpha\,\mathrm{Tw})

Defaults (Appendix C compatible)

  • Mesh: structured quads Nx×NyN_x\times N_y (CCW faces).

  • Quadrature: edges GL-2; faces tensor GL 3×33\times3.

  • Twist sign: CCW rotation viewed along +n+\mathbf n is positive.

  • Tolerances: τPBHL[106,103]\tau_{\mathrm{PBHL}}\in[10^{-6},10^{-3}]; τglue=1010\tau_{\mathrm{glue}}=10^{-10}; τ4πτPBHL\tau_{4\pi}\approx\tau_{\mathrm{PBHL}}.

  • Precision: float64; Kahan summation on edge sums.

10-step runbook (from logs to KPIs & control)

  1. Ingest: plan/do edge logs, any interior probes, boundary frames, units map U\mathsf U.

  2. Estimate AΠ\mathcal A_\Pi: fit along Γ±\Gamma_\pm, extend inside B\mathcal B (harmonic/kriging if needed).

  3. Curvature: compute FΠ=dAΠ\mathcal F_\Pi = d\mathcal A_\Pi (or estimate directly from sensors).

  4. Edge integrals: Γ±AΠ\oint_{\Gamma_\pm}\mathcal A_\Pi via GL-2 (raise to GL-4 on residual spikes).

  5. Surface flux: BFΠ\iint_{\mathcal B}\mathcal F_\Pi via tensor GL 3×33\times3 (use 4×44\times4 for rough fields).

  6. Twist: sum signed frame increments along Γ+\Gamma_+ minus Γ\Gamma_-; compute αTw\alpha\,\mathrm{Tw}.

  7. PBHL residual: r=Gap(Flux+αTw)r=\big|\text{Gap}-(\text{Flux}+\alpha\,\mathrm{Tw})\big| → assert rτPBHLr\le\tau_{\mathrm{PBHL}}.

  8. Five-line KPI: (Gap,Flux,Twist,Coherence,Residual)(\text{Gap},\text{Flux},\text{Twist},\text{Coherence},\text{Residual}).

  9. Ledger: WmacroW_{\text{macro}} via FΠ,JΠ\langle \mathcal F_\Pi,J_\Pi\rangle → map with U\mathsf U; compute Σmacro\Sigma_{\text{macro}}.

  10. Control:

    • Flux-gate (fast): act on curvature hotspots to reduce rr without raising Σmacro\Sigma_{\text{macro}}.

    • Twist-step (slow): choose minimal Δθ\Delta\theta that closes gap; respect 4π periodicity & twist budget.

Acceptance checks (run every time)

  • Two-boundary Stokes: Γ+ΓBdAΠ\oint_{\Gamma_+}-\oint_{\Gamma_-}\approx\iint_{\mathcal B}d\mathcal A_\Pi.

  • Gluing: interior edges cancel to τglue\le\tau_{\mathrm{glue}}.

  • 4π periodicity: class-function invariants identical at 00 and 4π4\pi; differ at 2π2\pi.

  • Units closure: LHS (edge units) = RHS (flux+twist units) after U\mathsf U.

  • Repro: seeded adaptivity; store mesh/quadrature JSON, KPI row, and (Gap,Flux,Twist,r)(\text{Gap},\text{Flux},\text{Twist},r).

Minimal pseudocode (abelian layer)

Mesh ← StructuredQuads(B, Nx, Ny)
I_plus  ← Σ_e∈Γ+  Quad1D(e, GL2, Aπ·dl)
I_minus ← Σ_e∈Γ−  Quad1D(e, GL2, Aπ·dl)
Flux    ← Σ_K     Quad2D(K, GL3x3, Fπ)
Tw      ← Σ_e∈Γ+ Δθ(e)  −  Σ_e∈Γ− Δθ(e)
Gap     ← I_plus − I_minus
r       ← | Gap − (Flux + α·Tw) |
assert r ≤ τ_PBHL
W_macro ← ∬ ⟨Fπ, Jπ⟩  → map via 𝕌
Σ_macro ← dispersion + WIP_age + rework + cost(α·Tw)

That’s it: compute Gap, Flux, Twist, check PBHL, report the KPI row, and act with flux-gate (fast) and twist-step (slow) while watching the ledger.

 

Appendix F — Belt-KPI Templates (per-domain forms / SQL; acceptance bands)

This appendix ships drop-in data forms and SQL to compute the five-line Belt KPI and ledger, plus acceptance bands by domain. All SQL below targets PostgreSQL (12+). Adapt column types as needed.


F.0 Quick recall (metrics)

  • Five-line KPI: Gap, Flux, Twist, Coherence, Residual, with
    Residual = Gap − (Flux + α·Twist).

  • Ledger: W_macro (macro work in domain units), Σ_macro (macro entropy/costs).

  • Entropy-Efficiency Index: EEI = W_macro / (W_macro + Σ_macro + 1e-9) in [0,1][0,1].


F.1 Core schema (normalized, minimal)

-- 1) Runs & geometry
CREATE TABLE belt_run (
  run_id           UUID PRIMARY KEY,
  domain           TEXT NOT NULL,      -- e.g., 'manufacturing', 'llm_ops', ...
  belt_name        TEXT NOT NULL,
  alpha_twist      DOUBLE PRECISION NOT NULL, -- α
  n_x              INT, n_y INT,       -- mesh bookkeeping (Appendix C)
  created_at       TIMESTAMPTZ NOT NULL DEFAULT now()
);

-- 2) Edge samples (plan/do traces)
CREATE TABLE belt_edge_log (
  run_id           UUID REFERENCES belt_run(run_id) ON DELETE CASCADE,
  side             TEXT CHECK (side IN ('PLAN','DO')), -- Γ+ vs Γ−
  s_param          DOUBLE PRECISION,                   -- local arc param
  ax_dl            DOUBLE PRECISION,                   -- Aπ · dl contribution
  frame_theta      DOUBLE PRECISION,                   -- boundary frame angle sample
  PRIMARY KEY (run_id, side, s_param)
);

-- 3) Face samples (flux)
CREATE TABLE belt_face_log (
  run_id           UUID REFERENCES belt_run(run_id) ON DELETE CASCADE,
  u_param          DOUBLE PRECISION,
  v_param          DOUBLE PRECISION,
  flux_density     DOUBLE PRECISION,                   -- Fπ sample
  jac_det          DOUBLE PRECISION,                   -- |det DΦ|
  w_uv             DOUBLE PRECISION,                   -- quad weight
  PRIMARY KEY (run_id, u_param, v_param)
);

-- 4) Coherence and costs (ledger pieces)
CREATE TABLE belt_signals (
  run_id           UUID PRIMARY KEY REFERENCES belt_run(run_id) ON DELETE CASCADE,
  coherence_raw    DOUBLE PRECISION,  -- proxy in [0,1] (normalized later)
  dispersion_cost  DOUBLE PRECISION,  -- units consistent with Σ_macro
  wip_age_cost     DOUBLE PRECISION,
  rework_cost      DOUBLE PRECISION,
  twist_cost_coeff DOUBLE PRECISION   -- per-rad (used to compute cost(α·Tw))
);

-- 5) Units & purpose current (domain mapping)
CREATE TABLE belt_units_map (
  run_id           UUID PRIMARY KEY REFERENCES belt_run(run_id) ON DELETE CASCADE,
  unit_label       TEXT,              -- e.g., 'pairs_of_shoes'
  J_scale          DOUBLE PRECISION   -- scalar for ⟨F, J⟩ mapping (simple case)
);

Indexes you’ll likely want:

CREATE INDEX ON belt_edge_log (run_id, side);
CREATE INDEX ON belt_face_log (run_id);

F.2 Derived views (Gap / Flux / Twist / KPI / Ledger)

-- Edge integrals on Γ+ and Γ− (abelian ops layer)
CREATE VIEW v_edge_integrals AS
SELECT run_id,
       SUM(CASE WHEN side='PLAN' THEN ax_dl ELSE 0 END) AS I_plus,
       SUM(CASE WHEN side='DO'   THEN ax_dl ELSE 0 END) AS I_minus
FROM belt_edge_log
GROUP BY run_id;

-- Surface flux
CREATE VIEW v_flux AS
SELECT run_id,
       SUM(flux_density * jac_det * w_uv) AS flux
FROM belt_face_log
GROUP BY run_id;

-- Twist (signed frame increments along each boundary; unwrap in ETL)
-- Here we assume frame_theta already preprocessed to per-segment Δθ and stored in ax_dl-like rows.
-- If not, store a Δtheta column and sum like below.
CREATE VIEW v_twist AS
SELECT run_id,
       SUM(CASE WHEN side='PLAN' THEN frame_theta ELSE 0 END) -
       SUM(CASE WHEN side='DO'   THEN frame_theta ELSE 0 END) AS twist
FROM belt_edge_log
GROUP BY run_id;

-- Five-line KPI + PBHL residual
CREATE VIEW v_kpi AS
SELECT r.run_id,
       e.I_plus - e.I_minus                AS gap,
       f.flux                              AS flux,
       t.twist                             AS twist,
       GREATEST(LEAST(s.coherence_raw,1.0),0.0) AS coherence,
       ABS( (e.I_plus - e.I_minus) - (f.flux + r.alpha_twist * t.twist) ) AS residual
FROM belt_run r
JOIN v_edge_integrals e USING(run_id)
JOIN v_flux f          USING(run_id)
JOIN v_twist t         USING(run_id)
LEFT JOIN belt_signals s USING(run_id);

-- Ledger: macro work & macro entropy, plus EEI
CREATE VIEW v_ledger AS
SELECT k.run_id,
       /* Macro work via simple linear mapping J_scale */
       (f.flux * u.J_scale)                          AS w_macro,
       /* Macro entropy Σ = dispersion + WIP + rework + twist_cost */
       (COALESCE(s.dispersion_cost,0)
      + COALESCE(s.wip_age_cost,0)
      + COALESCE(s.rework_cost,0)
      + COALESCE(s.twist_cost_coeff,0) * (ABS(r.alpha_twist * k.twist)) ) AS sigma_macro,
       /* Efficiency */
       CASE
         WHEN ( (f.flux * u.J_scale) + (COALESCE(s.dispersion_cost,0)
                                       +COALESCE(s.wip_age_cost,0)
                                       +COALESCE(s.rework_cost,0)
                                       +COALESCE(s.twist_cost_coeff,0)*ABS(r.alpha_twist*k.twist)) ) > 0
         THEN (f.flux * u.J_scale)
              / ( (f.flux * u.J_scale)
                + (COALESCE(s.dispersion_cost,0)
                 + COALESCE(s.wip_age_cost,0)
                 + COALESCE(s.rework_cost,0)
                 + COALESCE(s.twist_cost_coeff,0)*ABS(r.alpha_twist*k.twist)) )
         ELSE 0
       END AS eei,
       u.unit_label
FROM v_kpi k
JOIN belt_run r      USING(run_id)
JOIN v_flux f        USING(run_id)
LEFT JOIN belt_signals s USING(run_id)
LEFT JOIN belt_units_map u USING(run_id);

F.3 Acceptance bands (global defaults)

CREATE TABLE kpi_acceptance_band (
  domain           TEXT,                -- 'manufacturing', 'llm_ops', ...
  metric           TEXT,                -- 'residual','coherence','eei','twist_budget'
  band             TEXT,                -- 'green','yellow','red'
  lower_inclusive  DOUBLE PRECISION,
  upper_exclusive  DOUBLE PRECISION,
  PRIMARY KEY (domain, metric, band)
);

-- Defaults (adjust per domain in §F.4)
INSERT INTO kpi_acceptance_band VALUES
-- PBHL residual in natural edge units
('default','residual','green', 0.0,   1e-4),
('default','residual','yellow',1e-4,  1e-3),
('default','residual','red',   1e-3,  1e9),

-- Coherence in [0,1]
('default','coherence','red',    0.0, 0.40),
('default','coherence','yellow', 0.40,0.60),
('default','coherence','green',  0.60,1.01),

-- EEI in [0,1]
('default','eei','red',    0.0, 0.40),
('default','eei','yellow', 0.40,0.60),
('default','eei','green',  0.60,1.01),

-- Twist budget (abs α·Tw per run)
('default','twist_budget','green', 0.0, 0.50),
('default','twist_budget','yellow',0.50, 1.00),
('default','twist_budget','red',   1.00, 1e9);

Band evaluation helper:

-- Evaluate bands for a run
CREATE VIEW v_kpi_bands AS
WITH base AS (
  SELECT k.run_id, r.domain, k.residual, k.coherence, l.eei,
         ABS(r.alpha_twist * k.twist) AS twist_budget
  FROM v_kpi k
  JOIN belt_run r USING(run_id)
  JOIN v_ledger l USING(run_id)
)
SELECT b.run_id, m.metric, a.band
FROM base b
CROSS JOIN LATERAL (VALUES
  ('residual',  b.residual),
  ('coherence', b.coherence),
  ('eei',       b.eei),
  ('twist_budget', b.twist_budget)
) AS m(metric, val)
JOIN LATERAL (
  SELECT band FROM kpi_acceptance_band a
  WHERE (a.domain = (SELECT domain FROM belt_run WHERE run_id=b.run_id)
         OR a.domain='default')
    AND a.metric = m.metric
    AND m.val >= a.lower_inclusive
    AND m.val <  a.upper_exclusive
  ORDER BY (CASE WHEN a.domain='default' THEN 1 ELSE 0 END)  -- prefer domain-specific over default
  LIMIT 1
) a ON TRUE;

F.4 Domain templates (forms, extras, SQL & bands)

F.4.1 Manufacturing (“pairs of shoes”)

Form (ingest)

  • belt_signals: set dispersion_cost (lot dispersion), wip_age_cost (inventory age × rate), rework_cost, twist_cost_coeff (changeover cost per rad).

  • belt_units_map: unit_label='pairs_of_shoes', J_scale=<pairs per unit flux>.

Extras

-- Cycle-level twist budget (to prevent micro-flip thrashing)
CREATE VIEW v_mfg_twist_cycle AS
SELECT run_id,
       ABS(alpha_twist * twist) AS twist_budget,
       CASE WHEN ABS(alpha_twist * twist) <= 0.5 THEN 'OK' ELSE 'EXCESS' END AS status
FROM v_kpi JOIN belt_run USING(run_id);

Domain bands (override defaults)

INSERT INTO kpi_acceptance_band VALUES
('manufacturing','residual','green', 0.0, 5e-5),
('manufacturing','residual','yellow',5e-5,5e-4),
('manufacturing','residual','red',   5e-4,1e9),

('manufacturing','eei','green', 0.70,1.01),
('manufacturing','eei','yellow',0.55,0.70),
('manufacturing','eei','red',   0.0, 0.55);

SLO query (line-level daily)

-- % of runs green on residual AND eei
SELECT date_trunc('day', created_at) AS day,
       AVG( (resid.band='green')::int * (eei.band='green')::int ) AS pct_green_both
FROM (
  SELECT r.created_at, b1.band AS resid, b2.band AS eei
  FROM v_kpi_bands b1
  JOIN v_kpi_bands b2 USING(run_id)
  JOIN belt_run r USING(run_id)
  WHERE b1.metric='residual' AND b2.metric='eei' AND r.domain='manufacturing'
) x
GROUP BY 1 ORDER BY 1;

F.4.2 LLM Prompt-Ops (“llm_ops”)

Form (ingest)

  • coherence_raw: style/voice coherence (0–1) from embeddings.

  • dispersion_cost: context switch/branch dispersion proxy.

  • twist_cost_coeff: governance/prompt change cost per rad.

  • unit_label='resolved_tasks', J_scale=<tasks per unit flux>.

Extras

-- Flux spike detector (prompt injection / drift)
CREATE VIEW v_llm_flux_zscore AS
WITH f AS (SELECT run_id, flux FROM v_flux)
SELECT f.run_id,
       (f.flux - AVG(f.flux) OVER ()) / NULLIF(stddev_pop(f.flux) OVER (),0) AS z_flux
FROM f;

-- Alert
CREATE VIEW v_llm_alert AS
SELECT run_id, z_flux, (z_flux >= 3.0) AS is_alert
FROM v_llm_flux_zscore;

Bands (override)

INSERT INTO kpi_acceptance_band VALUES
('llm_ops','coherence','green', 0.75,1.01),
('llm_ops','coherence','yellow',0.60,0.75),
('llm_ops','coherence','red',   0.0, 0.60),

('llm_ops','residual','green', 0.0, 2e-4),
('llm_ops','residual','yellow',2e-4,1e-3),
('llm_ops','residual','red',   1e-3,1e9);

SLO query

-- % runs with coherence green and no flux alert
SELECT AVG( (c.band='green')::int * (a.is_alert=FALSE)::int ) AS pct_ok
FROM v_kpi_bands c
JOIN belt_run r USING(run_id)
LEFT JOIN v_llm_alert a USING(run_id)
WHERE r.domain='llm_ops' AND c.metric='coherence';

F.4.3 Healthcare / Physiology (“health”)

Form (ingest)

  • unit_label='adherent_days', J_scale=<adherent_days per unit flux>.

  • Costs: set wip_age_cost = “missed days * penalty”, rework_cost = “protocol resets”.

Bands

INSERT INTO kpi_acceptance_band VALUES
('health','eei','green', 0.65,1.01),
('health','eei','yellow',0.50,0.65),
('health','eei','red',   0.0, 0.50),

('health','residual','green', 0.0, 1e-4),
('health','residual','yellow',1e-4, 8e-4),
('health','residual','red',   8e-4, 1e9);

Adherence KPI (example)

CREATE VIEW v_health_adherence AS
SELECT l.run_id, l.w_macro AS adherent_days, l.eei, k.residual
FROM v_ledger l JOIN v_kpi k USING(run_id)
JOIN belt_run r USING(run_id)
WHERE r.domain='health';

F.4.4 Markets / Mechanism Design (“markets”)

Form (ingest)

  • unit_label='filled_orders', J_scale=<fills per unit flux>.

  • dispersion_cost = order routing dispersion; rework_cost = cancels/replaces; twist_cost_coeff = rule change overhead.

Bands

INSERT INTO kpi_acceptance_band VALUES
('markets','eei','green', 0.60,1.01),
('markets','eei','yellow',0.45,0.60),
('markets','eei','red',   0.0, 0.45),

('markets','residual','green', 0.0, 1e-4),
('markets','residual','yellow',1e-4, 1e-3),
('markets','residual','red',   1e-3, 1e9);

Microstructure stability

-- Rolling residual variance; flag volatile governance cycles
CREATE VIEW v_mkt_resid_vol AS
SELECT run_id,
       var_pop(residual) OVER (ORDER BY created_at
                               ROWS BETWEEN 20 PRECEDING AND CURRENT ROW) AS resid_var
FROM v_kpi JOIN belt_run USING(run_id)
WHERE domain='markets';

F.4.5 Governance / Compliance (“governance”)

Form (ingest)

  • unit_label='compliant_changes', J_scale=<compliant changes per unit flux>.

  • Costs emphasize twist_cost_coeff (policy flips), rework_cost (backouts).

Bands

INSERT INTO kpi_acceptance_band VALUES
('governance','twist_budget','green', 0.0, 0.30),
('governance','twist_budget','yellow',0.30,0.60),
('governance','twist_budget','red',   0.60,1e9),

('governance','residual','green', 0.0, 1e-4),
('governance','residual','yellow',1e-4, 8e-4),
('governance','residual','red',   8e-4, 1e9);

Policy window SLO

-- % runs honoring twist budget in the window (no excessive flips)
SELECT date_trunc('week', created_at) AS wk,
       AVG((band='green')::int) AS pct_green_twist
FROM v_kpi_bands b
JOIN belt_run r USING(run_id)
WHERE r.domain='governance' AND b.metric='twist_budget'
GROUP BY 1 ORDER BY 1;

F.5 JSON payloads (API contracts)

// POST /pfbt/run
{
  "run_id": "uuid",
  "domain": "manufacturing",
  "belt_name": "line-7-day-231",
  "alpha_twist": 0.42,
  "edges": {
    "plan":   [{"s":0.00,"ax_dl":0.013,"theta":0.01}, ...],
    "do":     [{"s":0.00,"ax_dl":0.009,"theta":0.00}, ...]
  },
  "faces": [
    {"u":0.125,"v":0.25,"flux_density":1.03,"jac_det":0.98,"w_uv":0.25},
    ...
  ],
  "signals": {
    "coherence_raw": 0.73,
    "dispersion_cost": 12.4,
    "wip_age_cost": 8.1,
    "rework_cost": 1.7,
    "twist_cost_coeff": 3.2
  },
  "units_map": {"unit_label":"pairs_of_shoes","J_scale": 2.5}
}

Response (KPI row, ledger, bands):

{
  "run_id":"uuid",
  "kpi": {"gap":1.847,"flux":1.622,"twist":0.39,"coherence":0.73,"residual":0.061},
  "ledger": {"W_macro":4.055,"Sigma_macro":27.6,"EEI":0.128,"unit":"pairs_of_shoes"},
  "bands": {"residual":"yellow","coherence":"green","eei":"red","twist_budget":"yellow"}
}

F.6 Unit-test snippets (SQL)

-- PBHL closure
SELECT assert_true(residual <= 1e-3, 'PBHL residual too high')
FROM v_kpi WHERE run_id = :run;

-- 4π periodicity (class-function invariant stored elsewhere) — placeholder pattern
-- SELECT assert_equal(inv(rot=0), inv(rot=4π)) ...

-- Ledger non-negativity pieces
SELECT assert_true((SELECT sigma_macro FROM v_ledger WHERE run_id=:run) >= 0, 'Σ < 0');

(Replace assert_* with your testing framework or PL/pgSQL helpers.)


F.7 Dashboard starters

  • Five-line KPI table: SELECT * FROM v_kpi JOIN v_ledger USING(run_id);

  • Band compliance heatmap: pivot v_kpi_bands by metric × band.

  • SLO tiles: use the domain queries in §F.4 to render % green trends.


Production notes

  • Always store raw edge/face samples; all views are purely derived for auditability.

  • Enforce seeded adaptivity and persist mesh/quadrature settings alongside runs.

  • Treat domain bands as policy, version them, and log diff as Twist events (Part VII).

End of Appendix F

 

Appendix G — Governance & Audit Playbooks (production notes)

This appendix gives you operational SOPs, schemas, and queries for governing Purpose versions, enforcing twist budgets, and running 4π & gluing audits. It plugs directly into the data model from Appendix F and the numerics from Appendix C.


G.0 Scope, Roles, and Guardrails

Scope: any run that computes the five-line KPI (Gap, Flux, Twist, Coherence, Residual) and ledger.
Roles (RACI):

  • Owner (O): Product/Process Lead (owns Purpose definition AΠ\mathcal A_\Pi & units map).

  • Controller (C): SRE/Ops (executes change windows, monitors bands/alerts).

  • Auditor (A): Internal Audit/QA (signs off on invariants & evidence packs).

  • Reviewer (R): Domain expert (reviews domain units, J-scale, costs).

Guardrails: No Purpose change deploys without (i) twist impact estimate, (ii) test pass, (iii) gluing test pass, (iv) PBHL residual within band.


G.1 Purpose Versioning (registry & diffs)

G.1.1 Registry schema

CREATE TABLE purpose_version (
  purpose_id       TEXT,             -- e.g., 'mfg.line7.vsm'
  semver           TEXT,             -- MAJOR.MINOR.PATCH
  version_id       UUID PRIMARY KEY,
  created_at       TIMESTAMPTZ DEFAULT now(),
  author           TEXT,
  alpha_twist      DOUBLE PRECISION, -- α at this version
  units_label      TEXT,             -- domain output unit name
  j_scale_default  DOUBLE PRECISION, -- default J_scale
  coherence_anchor JSONB,            -- reference style/voice, etc.
  spec_uri         TEXT,             -- doc link (design/spec)
  notes            TEXT
);

CREATE TABLE purpose_diff (
  from_version  UUID REFERENCES purpose_version(version_id) ON DELETE CASCADE,
  to_version    UUID REFERENCES purpose_version(version_id) ON DELETE CASCADE,
  diff_kind     TEXT CHECK (diff_kind IN ('PATCH','MINOR','MAJOR')),
  rationale     TEXT,
  expected_tw   DOUBLE PRECISION,      -- predicted Δθ (rad) on Γ+−Γ−
  expected_resid DOUBLE PRECISION,     -- predicted residual change
  reviewer      TEXT,
  reviewer_sig  TEXT,
  created_at    TIMESTAMPTZ DEFAULT now(),
  PRIMARY KEY (from_version, to_version)
);

G.1.2 Bump rules & sign-offs

  • PATCH: parameter nudges; no semantics change. One reviewer; dry-run PBHL residual within green band.

  • MINOR: new features or units-map change; twist forecast αΔθ0.5|\alpha \Delta\theta|\le 0.5. Reviewer + Owner sign-off.

  • MAJOR: purpose reframe or governance model switch; twist forecast αΔθ>0.5|\alpha \Delta\theta|>0.5 or class-function change. Owner + Auditor sign-off, change window required.


G.2 Twist Budgets (policy & enforcement)

G.2.1 Budget policy table

CREATE TABLE twist_budget_policy (
  domain       TEXT,
  window       TEXT,                  -- 'daily','weekly','cycle'
  max_alpha_tw DOUBLE PRECISION,      -- budget on |α·Tw|
  escalation   TEXT,                  -- 'warn','freeze','rollback'
  PRIMARY KEY (domain, window)
);

Defaults (override per domain):

  • daily: αTw0.5|\alpha\,\mathrm{Tw}| \le 0.5warn @ 0.4, freeze @ 0.6

  • weekly: αTw1.0|\alpha\,\mathrm{Tw}| \le 1.0escalate to review

G.2.2 Enforcement views

-- Accumulate α·Tw per window
CREATE VIEW v_twist_budget_window AS
SELECT r.domain,
       date_trunc('day', r.created_at) AS win,
       SUM(ABS(r.alpha_twist * k.twist)) AS alpha_tw_sum
FROM belt_run r
JOIN v_kpi k USING(run_id)
GROUP BY 1,2;

-- Violations
CREATE VIEW v_twist_violations AS
SELECT w.domain, w.win, w.alpha_tw_sum, p.max_alpha_tw,
       (w.alpha_tw_sum > p.max_alpha_tw) AS over_budget, p.escalation
FROM v_twist_budget_window w
JOIN twist_budget_policy p ON p.domain=w.domain AND p.window='daily';

Ops rule: on over_budget, the Controller enforces a Twist Freeze (no further governance/prompt changes) until a review closes the gap via flux-gates or accepted twist steps with explicit approval.


G.3 Audit Packs: 4π, Gluing, PBHL Closure

Every release produces an Evidence Pack with: inputs, settings, results, and invariant checks. Store URIs in an evidence_vault.

CREATE TABLE evidence_vault (
  run_id           UUID PRIMARY KEY REFERENCES belt_run(run_id) ON DELETE CASCADE,
  mesh_json_uri    TEXT,
  quad_json_uri    TEXT,
  kpi_json_uri     TEXT,
  class_fn_uri     TEXT,   -- invariants (traces/characters)
  audit_report_uri TEXT,
  sha256_bundle    TEXT    -- hash of archived tar/zip
);

G.3.1 4π Audit (class-function periodicity)

Goal: Class-function invariants equal at 00 and 4π4\pi, differ at 2π2\pi.
Procedure:

  1. Generate three belt runs with boundary frame rotations {0,2π,4π}\{0,2\pi,4\pi\}.

  2. Compute invariant I=χ(Hol)I=\chi(\mathrm{Hol}) (e.g., trace in a chosen rep).

  3. Assert I0I4πI_{0}\approx I_{4\pi}, I2π≉I0I_{2\pi}\not\approx I_{0}.

Template query (recorded result check):

CREATE TABLE fourpi_audit (
  run_id     UUID REFERENCES belt_run(run_id) ON DELETE CASCADE,
  angle_tag  TEXT CHECK (angle_tag IN ('0','2π','4π')),
  invariant  DOUBLE PRECISION,
  PRIMARY KEY (run_id, angle_tag)
);

-- Comparison view
CREATE VIEW v_fourpi_check AS
SELECT f0.run_id,
       ABS(f0.invariant - f4.invariant) AS diff_0_4π,
       ABS(f2.invariant - f0.invariant) AS diff_2π_0
FROM fourpi_audit f0
JOIN fourpi_audit f2 ON f2.run_id=f0.run_id AND f2.angle_tag='2π'
JOIN fourpi_audit f4 ON f4.run_id=f0.run_id AND f4.angle_tag='4π'
WHERE f0.angle_tag='0';

Pass criteria: diff_0_4π ≤ τ_4π and diff_2π_0 ≥ 10*τ_4π.

G.3.2 Gluing Audit (interior cancellation)

Goal: Shared interior edges cancel to machine precision.
Procedure:

  1. Tile B\mathcal B (≥16 cells).

  2. Sum oriented edge integrals per cell; aggregate interior edges with opposite orientation.

  3. Histogram residuals; max ≤ τ_glue (Appendix C).

Template (pseudo-view):

-- Assuming you persist per-edge oriented contributions with cell IDs
-- SELECT cell_id, edge_id, signed_contrib FROM tile_edge_sum ...
-- Then aggregate by shared edges:
-- SELECT edge_key, SUM(signed_contrib) AS resid FROM ... GROUP BY edge_key;

G.3.3 PBHL Closure Audit

Goal: Gap(Flux+αTw)τPBHL|\text{Gap}-(\text{Flux}+\alpha \mathrm{Tw})|\le\tau_{\mathrm{PBHL}}.
View: already in v_kpi.residual.
Policy: Red residual blocks release; Yellow requires Owner sign-off with a follow-up ticket.


G.4 Change Playbooks (CR → Deploy → Verify)

G.4.1 Change Request (CR)

  • Inputs: proposed new purpose_version, impact analysis: predicted ΔTw\Delta \mathrm{Tw}, PBHL residual deltas, domain KPI impact.

  • Checklist:

    • Diff kind (PATCH/MINOR/MAJOR) and signatories (per G.1.2).

    • Twist forecast within window budget (G.2).

    • suite PASS, Gluing PASS, PBHL in green.

    • Backout plan and restore point tagged.

G.4.2 Change Window (execution)

  • Freeze non-essential twist sources.

  • Enable dual logging (old & new purpose in shadow) for at least N runs.

  • Activate flux-gates (fast loop) to protect PBHL during rollout.

G.4.3 Post-Deploy Verification

  • Compare KPI deltas pre/post; EEI must not degrade beyond tolerance.

  • Close CR only after evidence_vault is sealed (bundle hashed) and Auditor sign-off.


G.5 Incident Response & Rollback

Triggers:

  • residual red; 4π fail; gluing fail; twist over-budget.

Immediate actions (Controller):

  1. Twist Freeze: block governance/prompt edits.

  2. Flux-Gate High: increase damping on curvature spikes.

  3. Rollback to last green purpose_version (automated if possible).

  4. RCA ticket with:

    • What changed (diff & twist increments)?

    • Where PBHL failed (edges/faces)?

    • Which invariants failed (provide plots)?

    • Plan to re-enable with calibrated α\alpha or mesh/quad fix.


G.6 Evidence & Traceability (what to archive)

Bundle contents per release:

  • Purpose spec & version registry entry (G.1).

  • Mesh & quadrature JSON.

  • KPI row(s) and ledger.

  • Class-function invariants (for 4π).

  • Gluing residual histogram.

  • PBHL residual summary and thresholds.

  • Twist budget window report.

  • Sign-offs (CR, approvals), plus sha256 of the whole pack stored in evidence_vault.

Retention: ≥ 1 year or per regulatory policy.


G.7 Reporting Queries (ready-to-use)

Release gate:

-- All must be green to pass
SELECT
  (SELECT COUNT(*)=0 FROM v_twist_violations WHERE over_budget) AS twist_ok,
  (SELECT COUNT(*)=0 FROM v_kpi_bands WHERE metric='residual' AND band='red') AS pbhl_ok,
  (SELECT COUNT(*)=0 FROM v_fourpi_check WHERE diff_0_4π > 1e-4 OR diff_2π_0 < 1e-3) AS fourpi_ok;

Audit dashboard (last 30 days):

SELECT
  date_trunc('day', r.created_at) AS day,
  AVG((b.band='green')::int) FILTER (WHERE b.metric='residual')   AS pct_pbhl_green,
  AVG((b.band='green')::int) FILTER (WHERE b.metric='eei')         AS pct_eei_green,
  AVG((NOT v.over_budget)::int)                                    AS pct_twist_within_budget
FROM belt_run r
JOIN v_kpi_bands b USING(run_id)
LEFT JOIN v_twist_violations v ON v.win=date_trunc('day', r.created_at) AND v.domain=r.domain
WHERE r.created_at > now() - interval '30 days'
GROUP BY 1 ORDER BY 1;

Change window scorecard (per purpose_id):

SELECT pv.purpose_id, pv.semver,
       COUNT(*) FILTER (WHERE k.residual <= 1e-4) AS runs_pbhl_green,
       AVG(l.eei) AS avg_eei,
       SUM(ABS(r.alpha_twist*k.twist)) AS total_alpha_tw
FROM purpose_version pv
JOIN belt_run r       ON r.domain = split_part(pv.purpose_id, '.', 1)
JOIN v_kpi k          USING(run_id)
JOIN v_ledger l       USING(run_id)
WHERE r.created_at BETWEEN :win_start AND :win_end
GROUP BY 1,2 ORDER BY 1,2;

G.8 Operational Checklists (print & pin)

Pre-Change (Owner/Reviewer)

  • Purpose diff classified; sign-offs collected.

  • Twist forecast within window budget.

  • 4π & Gluing PASS on staging data.

  • PBHL residual green on smoke suite.

During Change (Controller)

  • Twist Freeze on non-essential edits.

  • Dual logging enabled; evidence paths recorded.

  • Flux-gates active; alarms hooked to on-call.

Post-Change (Auditor)

  • KPI/EEI non-regression verified.

  • Twist budget report attached.

  • Evidence vault bundle hashed & filed.

  • CR closed; version registry bumped.


Notes & Tips

  • α calibration lives with the purpose_version; any α change is at least a MINOR bump (re-run 4π).

  • Treat coherence anchor as a governance artifact; drifting anchors imply silent twist—budget it.

  • When in doubt, prefer flux-gates (fast, reversible) over twist (sticky, budgeted).

End of Appendix G

 

Appendix H — Ontology Mapping (enterprise schemas • Palantir mapping • pipelines)

This appendix shows how to land PFBT into a real enterprise stack: canonical schemas, a Palantir Ontology mapping, and end-to-end pipelines (stream + batch) that compute Belt KPIs, ledgers, and audits with full lineage and governance (ties to Appendices C, F, G).


H.0 Overview (what maps to what)

PFBT concept Enterprise object Storage layer Compute Governance
Belt / worldsheet (B\mathcal B) belt_run (a single evaluation) Lake/Lakehouse table, partitioned by created_at SQL/PySpark Evidence pack (G.3)
Plan vs Do traces (Γ±\Gamma_\pm) belt_edge_log Append-only edge events SQL aggregations PBHL residual gate
Flux / curvature (FΠ\mathcal F_\Pi) belt_face_log (or derived from sensors) Grid/feature table 2-D quadrature (C.3) Mesh/quad JSON archived
Purpose connection (AΠ\mathcal A_\Pi) purpose_version + transforms Registry + repo Estimators (Part IV) Versioning (G.1)
Twist / framing (Tw) belt_edge_log.frame_theta Edge features Angle-unwrapping + sums Twist budgets (G.2)
Five-line KPI v_kpi view/materialized KPI mart SQL/PySpark Bands table (F.3)
Ledger (work/entropy) v_ledger view/materialized Finance-ready mart SQL/PySpark Audit pack
Invariants (4π, gluing) fourpi_audit, tile residuals Test datasets Unit tests Release gates (G.7)

H.1 Canonical enterprise schemas (cross-system)

H.1.1 Core tables (normalized)

Use the Appendix F schema as the source of truth: belt_run, belt_edge_log, belt_face_log, belt_signals, belt_units_map, plus views v_kpi, v_ledger, v_kpi_bands. Add enterprise fields:

ALTER TABLE belt_run
  ADD COLUMN tenant_id TEXT,
  ADD COLUMN system_env TEXT CHECK (system_env IN ('dev','stg','prod')),
  ADD COLUMN source_system TEXT,        -- e.g., 'SAP-MES', 'LLM-Gateway'
  ADD COLUMN purpose_version_id UUID;   -- FK to purpose_version (Appendix G)

H.1.2 ERP/MES crosswalk (example)

ERP/MES table PFBT landing Notes
WORK_ORDER, ROUTING_STEP belt_run (one run per line/time window) Carry work_center, sku, shift to belt_run
WIP_TRANSACTION belt_signals.wip_age_cost Convert inventory-age × rate
CHANGEOVER_LOG belt_signals.twist_cost_coeff Per-rad changeover cost
REWORK_RECORD belt_signals.rework_cost Same units as Σmacro\Sigma_{\text{macro}}
BOM, UOM belt_units_map Define unit_label & J_scale

H.1.3 ITSM/LLM-Ops crosswalk

Ops source PFBT landing Notes
Prompt version registry purpose_version Treat prompt/governance as Purpose
Response embeddings belt_signals.coherence_raw Normalize to [0,1]
Guardrail/policy flips Tw events Sum into frame_theta along edges

H.2 Palantir Foundry: Ontology mapping

H.2.1 Object Types (core)

{
  "objectTypes": [
    {
      "name": "BeltRun",
      "key": "run_id",
      "properties": {
        "domain": "String",
        "beltName": "String",
        "alphaTwist": "Double",
        "createdAt": "Datetime",
        "tenantId": "String",
        "env": "String"
      }
    },
    {
      "name": "PurposeVersion",
      "key": "version_id",
      "properties": {
        "purposeId": "String",
        "semver": "String",
        "alphaTwist": "Double",
        "unitsLabel": "String",
        "jScaleDefault": "Double",
        "specUri": "String"
      }
    },
    {
      "name": "KPIRecord",
      "key": "kpi_id",
      "properties": {
        "gap": "Double", "flux": "Double", "twist": "Double",
        "coherence": "Double", "residual": "Double"
      }
    },
    {
      "name": "LedgerRecord",
      "key": "ledger_id",
      "properties": { "wMacro": "Double", "sigmaMacro": "Double", "eei": "Double", "unit": "String" }
    },
    {
      "name": "EvidencePack",
      "key": "run_id",
      "properties": { "meshJsonUri": "String", "quadJsonUri": "String", "kpiJsonUri": "String",
        "classFnUri": "String", "auditReportUri": "String", "sha256Bundle": "String" }
    }
  ]
}

H.2.2 Links (relationships)

{
  "linkTypes": [
    { "name": "USES_PURPOSE", "fromType": "BeltRun", "toType": "PurposeVersion" },
    { "name": "GENERATES_KPI", "fromType": "BeltRun", "toType": "KPIRecord" },
    { "name": "GENERATES_LEDGER", "fromType": "BeltRun", "toType": "LedgerRecord" },
    { "name": "HAS_EVIDENCE", "fromType": "BeltRun", "toType": "EvidencePack" },
    { "name": "SUCCESSOR_OF", "fromType": "PurposeVersion", "toType": "PurposeVersion" }
  ]
}

Notes

  • Use Object Sets for domains (manufacturing, llm_ops, …).

  • Add Access Policies (RLS) on tenantId, env.

  • Expose Actions on BeltRun: recomputeKPI, calibrateAlpha, freezeTwist, openChangeRequest (invoke Code Repos transforms or Foundry Workflows).

H.2.3 Dataset binding

Bind the canonical tables and views to Ontology objects:

  • belt_runBeltRun (object dataset).

  • purpose_versionPurposeVersion.

  • v_kpi (or materialization) → KPIRecord (link on run_id).

  • v_ledgerLedgerRecord (link on run_id).

  • evidence_vault → **EvidencePack`.


H.3 Pipelines (Foundry Workflow / generic DAG)

H.3.1 DAG (high level)

[Raw Ingest: plan/do events, sensors, policy flips]
           │
           ▼
[Normalize & Align] ──▶ [Edge Builder Γ±] ──▶ [Twist Calculator]
           │                              
           └──────────▶ [Face Builder (flux)] ─▶ [Flux Integrator]
                                                   │
                                                   ▼
                                       [KPI & PBHL Residual]
                                                   │
                              ┌────────────────────┴───────────────────┐
                              ▼                                        ▼
                       [Ledger Computation]                    [Invariants Suite]
                              │                                  (4π, gluing)
                              ▼                                        │
                        [Bands & Alerts]                      [Audit Evidence Pack]
                              │                                        │
                              └──────────▶ [Ontology Sync (objects+links)]

H.3.2 Transform specs (typical Foundry blocks)

  • Ingest (stream/batch): Code Workbook (PySpark) consuming Kafka/CDC; write to raw.plan_do, raw.sensors, raw.policy.

  • Normalize & Align: dedupe, time-sync, unit normalization; write stg.edge_samples, stg.face_samples.

  • Edge Builder: compute per-edge ax_dl and frame_theta deltas (unwrap angles); write belt_edge_log.

  • Face Builder: grid/param map + Jacobians; write belt_face_log.

  • Flux Integrator: apply quadrature (defaults C.3); write v_flux materialization.

  • Twist Calculator: sum signed Δθ along Γ+\Gamma_+ minus Γ\Gamma_-; write v_twist.

  • KPI Compute: join v_edge_integrals, v_flux, v_twist, belt_signals; write v_kpi materialization.

  • Ledger Compute: join v_kpi + belt_units_map + costs; write v_ledger.

  • Invariants: 4π suite + gluing histogram; write fourpi_audit, tile_residuals.

  • Evidence Pack: bundle JSON/plots → object store; write evidence_vault with SHA-256.

  • Ontology Sync: push updates to Ontology objects & links (Foundry’s Ontology APIs).

H.3.3 Scheduling & partitioning

  • Streaming: low-latency updates for v_kpi + alerts (prompt-ops).

  • Daily batch: manufacturing; partition by created_at::date.

  • Idempotency: use (run_id, side, s_param) and (run_id, u_param, v_param) natural keys; MERGE on upserts.

  • Backfills: run by date partitions; record backfill_job_id in belt_run.

H.3.4 Quality & lineage

  • Tests: embed Appendix D smoke tests (items 2,4,5,10,11,17) as Workflow assertions.

  • Lineage: enable dataset provenance; tag code SHA & Purpose semver into outputs.

  • Quarantine: if PBHL residual red → route inputs to err.quarantine with reason.


H.4 Domain adapters (examples)

H.4.1 Manufacturing adapter (SAP/MES)

  • Adapter joins WORK_ORDER, ROUTING_STEP, CHANGEOVER_LOG into belt_run + belt_signals.

  • Units map: compute J_scale = pairs_per_flux_unit from historical calibration runs.

  • Acceptance: domain bands override defaults (Appendix F §F.4.1).

H.4.2 LLM-Ops adapter

  • Build coherence_raw from embedding similarity to an anchor (Appendix G note).

  • Purpose = prompt/governance bundle (versioned); Tw increments from prompt deltas.

  • Flux proxy from curvature of embedding trajectories across turns.

H.4.3 Markets adapter

  • Flux from order-book microstructure features; Tw from rule changes (margin, tick size).

  • EEI bands per §F.4.4; add rolling residual variance monitor.


H.5 APIs (thin layer)

H.5.1 Read KPI/ledger (per run)

GET /pfbt/runs/{run_id}/kpi
→ { gap, flux, twist, coherence, residual, w_macro, sigma_macro, eei, unit, bands }

H.5.2 Trigger recompute / alpha calibration

POST /pfbt/runs/{run_id}/actions/recompute-kpi
POST /pfbt/purpose/{version_id}/actions/calibrate-alpha

H.5.3 Evidence pack fetch

GET /pfbt/runs/{run_id}/evidence
→ { meshJsonUri, quadJsonUri, classFnUri, kpiJsonUri, auditReportUri, sha256Bundle }

H.6 Security & multi-tenant

  • Row-level security by tenant_id; tag datasets and Ontology Objects.

  • Environment segregation (dev/stg/prod) with promotion pipelines.

  • Secrets for source connectors and evidence storage; never embed in units map.


H.7 Quick-start checklist (print & pin)

  • Schemas deployed (Appendix F + enterprise fields).

  • Ontology object/link types created and bound to datasets.

  • Pipelines wired: ingest → normalize → edge/face → KPI → ledger → invariants → evidence → ontology sync.

  • Bands and twist budgets loaded per domain.

  • Tests on: PBHL closure, gluing, 4π periodicity (green).

  • Dashboards: KPI table, bands heatmap, twist budget window, 4π/gluing reports.

  • Change playbooks (Appendix G) integrated into CR workflow (freeze/rollback hooks ready).


H.8 Minimal Foundry “Actions” (suggested)

  • BeltRun.recomputeKPI → re-run KPI & ledger transforms; write new EvidencePack; update Ontology links.

  • PurposeVersion.calibrateAlpha → run 0/2π/4π suite; fit α\alpha; MINOR bump on success; push to registry.

  • BeltRun.freezeTwist → toggle policy in twist_budget_policy and notify controllers.

  • PurposeVersion.openChangeRequest → generate CR object from diff; pre-fill twist forecast & required sign-offs.


Result: PFBT becomes a first-class semantic-operational layer in your enterprise: the Ontology anchors Purpose and Belts; the pipelines compute invariants and ledgers with audit-grade lineage; and governance enforces twist budgets and release gates.

 

Appendix I — Datasets & Reproducibility (production notes)

Everything you need to ship, regenerate, and audit PFBT results: synthetic & anonymized logs, configs, seeds, manifests.

Download the ready-to-use bundle

Contents (all reproducible; schema matches Appendix F):

  • belt_run.csv — per-run metadata (domain, α, mesh, timestamp).

  • belt_edge_log.csv — edge samples for Γ⁺=PLAN and Γ⁻=DO (ax_dl, frame_theta as Δθ per segment).

  • belt_face_log.csv — face samples for flux integration (flux_density, jac_det, w_uv).

  • belt_signals.csv — coherence & cost inputs (ledger pieces).

  • belt_units_map.csv — units mapping (e.g., pairs_of_shoes) & J_scale.

  • fourpi_audit.csv — invariant traces for 0 / 2π / 4π rotations (toy SU(2) trace).

  • pfbt_config.yamlmesh, quadrature, tolerances, run specs.

  • seeds.jsonglobal seed + per-run deterministic seeds.

  • manifest.sha256 — hashes for integrity; pin in evidence packs (Appendix G).

  • README_REPRO.txt — one-page instructions to load and verify PBHL & 4π.


I.1 Repro recipe (do this every time)

  1. Verify hashes

shasum -a 256 -c manifest.sha256
  1. Load CSVs into the Appendix-F schema (or Ontology bindings from Appendix H).

  2. Materialize views: v_edge_integrals, v_flux, v_twist, v_kpi, v_ledger.

  3. Acceptance checks

  • PBHL: ABS(Gap - (Flux + α·Twist)) ≤ tau_PBHL from pfbt_config.yaml.

  • 4π: invariants at 0 and 4π match, 2π differs.

  • Gluing (if tiled datasets provided): interior edge residuals ≤ tau_glue.

  1. Archive evidence: store CSVs + config + seeds + manifest in your evidence_vault (Appendix G).


I.2 Synthetic data generator (what the bundle encodes)

  • Deterministic seeds: global seed 31415926 + per-run seeds derived from run names.

  • Three smoke runs (manufacturing domain):

    • angle_tag 0: Tw = 0, Flux = 1.800

    • angle_tag : Tw = 2π, Flux = 1.620

    • angle_tag : Tw = 4π, Flux = 1.620

  • PBHL closure is baked in: we choose I+I_+ and set II_- so
    Gap = Flux + α·Tw + ε with tiny ε ∈ [1e-5, 2e-5] (within tau_PBHL=1e-4).

  • Edge logs: 100 points/side; ax_dl positive chunks that sum to I+I_+ / II_-.

  • Twist: frame_theta stores per-segment Δθ, summing to Tw = Σ(PLAN) − Σ(DO).

  • Face logs: 4×4 grid; weights sum to 1, so surface integral = flux_total.

  • Four-π audit: invariant_trace set to {0: +2, 2π: −2, 4π: +2} to demonstrate periodicity.


I.3 Anonymization playbook (for real logs)

When you move from synthetic to anonymized production data, apply this privacy + fidelity sequence before landing in Appendix-F tables:

  1. ID hashing & tokenization

  • Hash run_id, belt_name, and any PII keys with salt per tenant (HMAC-SHA256(tenant_salt, key)).

  1. Quantization

  • Quantize s_param, u_param, v_param to fixed grids (e.g., 1e-3) to remove timing micro-signatures.

  1. Noise (DP-style)

  • Add zero-mean noise to ax_dl and flux_density at ≤ 0.25·tau_PBHL scale (keeps PBHL checks valid).

  • Clip to preserve signs for edge contributions.

  1. Swap & jitter

  • Randomly swap 5–10% of adjacent samples within a small window; add timestamp jitter (±1–3s) if timestamps are present (not in the Appendix-F minimal schema).

  1. k-Anonymity buckets

  • Aggregate per-run cost fields (dispersion_cost, wip_age_cost, rework_cost) into coarse buckets when cardinalities are small.

  1. Lineage

  • Emit an anonymization report (JSON) per batch: method, parameters, seeds, pre/post stats; attach to evidence_vault.

Guardrail: After anonymization, re-run PBHL & 4π smoke tests. If PBHL residual > yellow, reduce noise or increase mesh/quad fidelity.


I.4 Config discipline (what must be pinned)

Pin all of the following in every evidence pack:

  • pfbt_config.yaml (mesh Nx,Ny, quadrature rules, tolerances).

  • Seeds: global_seed + per-run seeds; if adaptivity is used, seed the splitter too.

  • Purpose version + α (Appendix G): record purpose_version.version_id and alpha_twist.

  • Units map: domain unit_label, J_scale at time of run.

  • Code SHAs: hash of transforms/notebooks used to generate edge/face logs and KPIs.


I.5 Re-run determinism (CI gates)

  • Disallow non-deterministic ops in the numeric path (no parallel reductions without Kahan; no random sampling without fixed seeds).

  • Idempotent ingests: upserts by (run_id, side, s_param) and (run_id, u_param, v_param).

  • Seed registry: keep a table seed_registry(run_id, stage, seed, created_at); log reads/writes.

  • Golden tests: include Appendix-D smoke items (2, 4, 5, 10, 11, 17) in CI; fail the build on any drift.


I.6 Example loader queries (sanity)

-- Gap / Flux / Twist / Residual
SELECT * FROM v_kpi WHERE run_id IN (SELECT run_id FROM belt_run ORDER BY created_at LIMIT 3);

-- 4π audit checks
SELECT * FROM fourpi_audit;
-- Expect invariant(0) ≈ invariant(4π), invariant(2π) different.

-- Ledger in domain units
SELECT unit_label, w_macro, sigma_macro, eei
FROM v_ledger WHERE run_id IN (SELECT run_id FROM belt_run ORDER BY created_at LIMIT 3);

I.7 Repro checklist (print & pin)

  • Hashes OK (manifest.sha256).

  • Schema loaded (Appendix F), configs & seeds pinned.

  • PBHL green, 4π pass.

  • Evidence bundle archived with SHA-256 (Appendix G).

  • If anonymized: privacy report attached, post-anonymization PBHL/4π re-pass.


If you want extra synthetic runs (e.g., noisy belts, tiled gluing cases, non-abelian toys), say the word and I’ll mint an expanded pack in the same format.

Appendix J — Glossary & Symbol Index (cross-domain)

J.1 Master Glossary (A→Z)

Abelian (ops layer) — The practical scalar version of the theory where ordering is ignored. Lets you compute Gap = Flux + α·Twist with standard 1D/2D quadrature. See Non-abelian for the full geometric form.

Belt / worldsheet (B\mathcal B) — The oriented surface whose boundary carries the two traces: plan vs do. Everything—flux, twist, gap—accumulates over this belt.

Belt gluing — Joining belts along an interior edge; contributions on the shared edge cancel when orientations oppose. Used for modular pipelines and tiling meshes.

Belt trick (4π periodicity) — A 2π2\pi frame rotation is not homotopic to identity on a belt; 4π4\pi is. This yields the 4π audit.

Class function (invariant) — A function of holonomy that’s gauge-invariant (e.g., trace, character, argdet\arg\det). Used in 4π tests and release gates.

Coherence (“神”) — A [0,1] stabilizer indicating how phase-aligned plan and do are (voice/style/process coherence). High coherence widens controller stability margins.

Compliance χ\chi — Constitutive gain from curvature to purpose current. If JΠ=χFΠJ_\Pi=\chi\,\star\mathcal F_\Pi, passive macro-work is non-negative.

Controller: flux-gate — Continuous action that suppresses curvature hotspots to shrink residual without changing framing.

Controller: twist-step — Discrete governance/prompt/policy change that adjusts the boundary framing; budgeted and audited.

Curvature FΠ\mathcal F_\Pi — The “field strength” of Purpose; the surface density whose flux can do macro work. In abelian ops, FΠ=dAΠ\mathcal F_\Pi=d\mathcal A_\Pi.

Edge gap (Gap) — The difference of edge integrals Γ+AΠΓAΠ\oint_{\Gamma_+}\mathcal A_\Pi - \oint_{\Gamma_-}\mathcal A_\Pi. Equals Flux + α·Twist by PBHL.

EEI (Entropy-Efficiency Index)EEI=Wmacro/(Wmacro+Σmacro+109)[0,1]\mathrm{EEI} = W_{\text{macro}} / (W_{\text{macro}}+\Sigma_{\text{macro}}+10^{-9}) \in [0,1]. Higher is better.

Evidence pack — The archived bundle (data, configs, seeds, invariants, hashes) proving a run’s numbers.

Framing / Twist (Tw) — Signed rotation of a chosen boundary frame (governance steps, prompt changes, policy flips). Positive = CCW viewed along +n+\mathbf n.

Gluing audit — Unit test that interior edges cancel to machine precision on tiled belts.

Holonomy Hol\mathrm{Hol} — The path-ordered exponential of AΠ\mathcal A_\Pi along a boundary; measures total “turn” imposed by Purpose along the trace.

Macro entropy Σmacro\Sigma_{\text{macro}} — Costs in the ledger: dispersion, WIP-age, rework, twist-cost. Increases with misalignment or excessive framing changes.

Macro work WmacroW_{\text{macro}} — Domain-unit output driven by curvature interacting with the purpose current: FΠ,JΠ\iint \langle \mathcal F_\Pi, J_\Pi\rangle.

Magnus Ω2\Omega_2 — A stable second-order integrator for matrix exponentials used in non-abelian edge/surface ordering.

Mesh — Discretization of the belt into cells (quads/triangles) with CCW face orientation; drives numerical accuracy and gluing.

Non-abelian — Full geometric version with surface/path ordering: Hol(Γ+)Hol(Γ)1=SexpW1FΠWeiαTw\mathrm{Hol}(\Gamma_+)\mathrm{Hol}(\Gamma_-)^{-1}=\mathcal S\exp\iint W^{-1}\mathcal F_\Pi W\cdot e^{i\alpha\,\mathrm{Tw}}.

PBHL (Purpose Belt Holonomy Law) — The central identity: Gap = Flux + Twist (with α coupling). Operates as a conservation law and acceptance check.

Purpose / 志 (AΠ\mathcal A_\Pi) — The estimable connection field encoding “what we are trying to do.” Its curvature does macro work.

Purpose current JΠJ_\Pi — The response field mapping context to how curvature converts to output units.

ResidualGap(Flux+αTw)|\text{Gap} - (\text{Flux}+\alpha\cdot\mathrm{Tw})|. The PBHL closure error; must be within tolerance.

Stokes (two-boundary) — Orientation-aware theorem giving the edge gap as a surface integral (plus framing term).

Twist budget — Policy that caps αTw|\alpha\cdot\mathrm{Tw}| per window (daily/weekly/cycle) to prevent governance thrash.

Units map U\mathsf U — The calibration from field/flux units to domain outputs (e.g., “pairs of shoes”, “resolved tasks”).


J.2 Symbol Index (grouped)

Geometry & Orientation

  • B\mathcal B — Belt/worldsheet (oriented surface).

  • B=Γ+(Γ)\partial\mathcal B=\Gamma_+\sqcup(-\Gamma_-) — Boundary: plan (forward) vs do (reversed).

  • Γ+\Gamma_+, Γ\Gamma_- — Upper/lower traces.

  • n\mathbf n — Unit normal; CCW is positive relative to +n+\mathbf n.

  • e,Ke, K — Edge, cell (mesh elements).

  • e,ΦK\ell_e, \Phi_K — 1D/2D charts for edges/faces.

Fields & Operators

  • AΠ\mathcal A_\Pi — Purpose connection (1-form).

  • FΠ=dAΠ+AΠAΠ\mathcal F_\Pi=d\mathcal A_\Pi+\mathcal A_\Pi\wedge\mathcal A_\Pi — Curvature (2-form).

  • d,d,\wedge — Exterior derivative, wedge product.

  • P,S\mathcal P,\mathcal S — Path/surface ordering symbols.

  • WW — Parallel transport operator on the surface.

Integrals & Invariants

  • Hol(Γ)=PexpΓAΠ\mathrm{Hol}(\Gamma)=\mathcal P\exp\oint_\Gamma \mathcal A_\Pi — Edge holonomy.

  • Tw\mathrm{Tw} — Total boundary twist (radians).

  • α\alpha — Twist coupling (units chosen so Flux and αTw\alpha\mathrm{Tw} match edge units).

  • PBHL (abelian): Γ+AΠΓAΠ=BFΠ+αTw\oint_{\Gamma_+}\mathcal A_\Pi - \oint_{\Gamma_-}\mathcal A_\Pi = \iint_{\mathcal B}\mathcal F_\Pi + \alpha\,\mathrm{Tw}.

  • Gap — LHS of PBHL.

  • FluxBFΠ\iint_{\mathcal B}\mathcal F_\Pi.

  • Residual — PBHL closure error rr.

Ledger & KPIs

  • JΠJ_\Pi — Purpose current.

  • WmacroFΠ,JΠW_{\text{macro}} \propto \iint \langle \mathcal F_\Pi, J_\Pi\rangle — Macro work.

  • Σmacro\Sigma_{\text{macro}} — Macro entropy (dispersion + WIP-age + rework + twist-cost).

  • EEI — Entropy-Efficiency Index [0,1]\in[0,1].

  • CC — Coherence score [0,1]\in[0,1].

Numerics & Tolerances

  • Nx,NyN_x,N_y — Mesh cells in x/y.

  • q1,q2q_1,q_2 — Quadrature points (edge/face).

  • hh — Mesh size; κ\kappa — curvature scale.

  • Δθ\Delta\theta — Local twist increment.

  • τPBHL,τglue,τ4π\tau_{\mathrm{PBHL}},\tau_{\mathrm{glue}},\tau_{4\pi} — Acceptance tolerances.


J.3 Cross-Domain Lexicon (concept → domain alias/examples)

Purpose / 志

  • Manufacturing: line objective / routing intent (per SKU/shift).

  • LLM-Ops: prompt+guardrail bundle (style, policy, tools).

  • Markets: mechanism rulebook (tick, margin, auction).

  • Governance: policy specification (controls, exclusions).

Curvature (Flux driver)

  • Manufacturing: change pressure / setup conflict hotspots.

  • LLM-Ops: embedding curvature spikes (prompt-injection, drift).

  • Markets: microstructure stress (spread jumps, queue flips).

  • Governance: rule friction (conflicting controls).

Twist (framing/governance steps)

  • Manufacturing: changeovers, routing flips, rework instructions.

  • LLM-Ops: prompt edits, policy toggles, tool-use on/off.

  • Markets: rule changes, fee switches, throttle policy flips.

  • Governance: policy enactments, exception waivers.

Coherence (“神”)

  • Manufacturing: plan vs execution alignment; schedule adhesion.

  • LLM-Ops: voice/style/format consistency to anchor.

  • Markets: venue/protocol alignment with target regime.

  • Governance: control set consistency vs standard.

Macro work WmacroW_{\text{macro}}

  • Manufacturing: pairs of shoes produced (net, defect-adjusted).

  • LLM-Ops: resolved tasks or accepted answers.

  • Markets: filled orders or executed notional.

  • Governance: compliant changes enacted.

Macro entropy Σmacro\Sigma_{\text{macro}}

  • Manufacturing: WIP-age cost + changeover + rework.

  • LLM-Ops: context dispersion + moderation churn + prompt churn.

  • Markets: cancel/replace overhead + regime switch costs.

  • Governance: audit backouts + policy-flip overhead.

Flux-gate

  • Manufacturing: temporary buffer, pace damping, line rebalancing.

  • LLM-Ops: context clamp, tool restriction, rate-limit on risky flows.

  • Markets: volatility throttles, guard bands.

  • Governance: control escalation, freeze windows.

Twist budget

  • Manufacturing: daily changeover rad cap.

  • LLM-Ops: prompt-edit rad cap per window.

  • Markets: rule-change caps per session.

  • Governance: policy-flip allowance per quarter.


J.4 Notation collisions & do/don’t

  • Don’t flip n\mathbf n without flipping loop orientation; Tw\mathrm{Tw} sign will invert and break PBHL if you forget.

  • Do compute KPIs from class functions in non-abelian mode to preserve gauge invariance and 4π periodicity.

  • Don’t mix units: ensure αTw\alpha\,\mathrm{Tw} carries the same units as edge integrals after mapping.

  • Do record semver + α with every run; any α change is at least a MINOR version bump.


J.5 Ontology & Enterprise names (quick cross-ref)

  • BeltRunbelt_run (one evaluation).

  • PurposeVersionpurpose_version (semver’d Purpose, includes α).

  • KPIRecordv_kpi (Gap, Flux, Twist, Coherence, Residual).

  • LedgerRecordv_ledger (W_macro, Σ_macro, EEI, unit).

  • EvidencePackevidence_vault (URIs, hash).


J.6 Micro-cheats (one-liners)

  • PBHL: Gap = Flux + α·Twist.

  • Twist sign: CCW along +n+\mathbf n is positive.

  • : test 0 vs 4π equal, 2π different.

  • Gluing: interior edges cancel to machine epsilon.

  • Ledger: Work up, Entropy down, Residual small.

(Use this appendix to normalize vocabulary across teams; if a term isn’t here, inherit definitions from Appendices A–I.)

 

 

 

 © 2025 Danny Yeung. All rights reserved. 版权所有 不得转载

 

Disclaimer

This book is the product of a collaboration between the author and OpenAI's GPT-5 language model. While every effort has been made to ensure accuracy, clarity, and insight, the content is generated with the assistance of artificial intelligence and may contain factual, interpretive, or mathematical errors. Readers are encouraged to approach the ideas with critical thinking and to consult primary scientific literature where appropriate.

This work is speculative, interdisciplinary, and exploratory in nature. It bridges metaphysics, physics, and organizational theory to propose a novel conceptual framework—not a definitive scientific theory. As such, it invites dialogue, challenge, and refinement.


I am merely a midwife of knowledge.

 

No comments:

Post a Comment