Sunday, September 21, 2025

Purpose-Flux Belt Theory (PFBT) - Part I - II

 https://chatgpt.com/share/68d01a24-9c1c-8010-a82a-11f1c454cad2

 https://osf.io/yaz5u/files/osfstorage/68d01dd47195bb99223b7dfe

Purpose-Flux Belt Theory (PFBT)  Part I & II

Front Matter

Preface

Goals — why belts, not lines

Most real processes run on two complementary traces: a Plan/Reference edge and a Do/Realized edge. Modeling them on a single line hides the invariants that actually drive outcomes. A belt (a two-boundary worldsheet) restores those invariants: the edge-to-edge gap equals a surface flux plus a framing/twist term. In PFBT we make Purpose (志) the field that sources the flux, and we turn those invariants into controllers and ledgers you can run in production—engineering, operations, and research all on the same geometry.

  • Purpose → Flux; Plan ↔ Do. We treat Purpose/志 as a connection field AΠ\mathcal A_\Pi. Its curvature FΠ=dAΠ+AΠAΠ\mathcal F_\Pi = d\mathcal A_\Pi + \mathcal A_\Pi\wedge\mathcal A_\Pi is the work-producing drive across the belt face. Framing/governance shows up as a twist along the edges.

  • Promise: we give you belt invariants (gap/flux/twist/coherence), gluing rules, and controllers (flux-gates, twist-stepping) plus a macro work–entropy ledger that lands in your own units—pairs of shoes, filled orders, basis points, regimen adherence—and charges governance costs like WIP, changeovers, rework, and policy flips.

Key results (stated up front)

Purpose Belt Holonomy Law (PBHL) — the belt identity you will use everywhere:

Γ+ ⁣AΠ    Γ ⁣AΠedge gap (plan vs do)  =  B ⁣FΠpurpose flux (does work)  +  αTwframing / governance twist.\underbrace{\oint_{\Gamma_+}\!\mathcal A_\Pi \;-\; \oint_{\Gamma_-}\!\mathcal A_\Pi}_{\text{edge gap (plan vs do)}} \;=\; \underbrace{\iint_{\mathcal B}\!\mathcal F_\Pi}_{\text{purpose flux (does work)}} \;+\; \underbrace{\alpha\,\mathrm{Tw}}_{\text{framing / governance twist}}.

(Non-abelian form with surface ordering and Wilson transport appears in Part I.) This is the “gap = flux + twist” law specialized to Purpose/志.

Macro work–entropy ledger — a domain-unit accounting tied to PBHL:

  • Macro work WmacroW_{\text{macro}} (e.g., pairs of shoes) tracks the purpose-aligned flux over the belt face.

  • Macro entropy Σmacro\Sigma_{\text{macro}} aggregates dispersion, WIP-age, rework, and twist-cost (policy/prompt/rule changes).
    This makes “purpose machines” measurable and steerable without invoking thermodynamic temperature—exactly the spirit in the founding memo.

Figure (one-page diagram you’ll see all book long)

   Γ+  (Plan / Reference edge) ─────────────────────────────────────┐
     ↘                                                           ↗  │   edge gap = ∮Γ+ AΠ − ∮Γ− AΠ
       ↘                 Belt face  𝔅 (Purpose flux)           ↗    │   = ∬𝔅 FΠ  +  α·Tw
         ↘             ∬𝔅 𝓕_Π  (does macro work)            ↗      │
           ↘                                           ↗            │
             └───────────────────────────────────────┬──────────────┘
                                                     │  Tw (framing / policy twist along the belt)
   Γ−  (Do / Realized edge) ─────────────────────────┘
  • Edges: Plan vs Do logs.

  • Face: integrated purpose flux (the “work density”).

  • Twist: minimal governance change needed to close the gap.

Artifacts

Elevator pitch (take this to your exec / PI / lead)

Purpose-Flux Belt Theory (PFBT) turns “Purpose/志” into a measurable field whose curvature does macro work.
For any process with Plan↔Do, model a belt; then edge gap = purpose flux + twist.
We ship invariants, controllers, and a macro work–entropy ledger in your units (shoes, orders, bps), including governance costs (WIP, changeovers, rework, policy flips).
Result: diagnose, control, and audit purpose execution with reproducible tests (two-boundary Stokes, 4π, gluing).

Glossary teaser (full in Appendix J)

  • Belt B\mathcal B — a two-boundary worldsheet; minimal surface for Plan/Do.

  • Edges Γ±\Gamma_\pm++ plan/reference, - do/realized.

  • Purpose connection AΠ\mathcal A_\Pi — the 1-form encoding intent/志.

  • Curvature FΠ\mathcal F_\Pi — non-conservative purpose flux (work driver).

  • Twist (Tw) — framing/governance reparameterization along edges.

  • PBHLΓ+AΠΓAΠ=BFΠ+αTw\oint_{\Gamma_+}\mathcal A_\Pi - \oint_{\Gamma_-}\mathcal A_\Pi = \iint_{\mathcal B}\mathcal F_\Pi + \alpha\,\mathrm{Tw}.

  • Coherence / “Shen” — multi-belt phase-lock under a shared purpose field; operational stability metric used in Part VII.


Reading map. If you want proofs and discrete calculus, start in Part I–II. If you want dashboards and controllers, jump to Part V–VIII. For domain examples (manufacturing shoes → pairs of shoes ledger; finance; org ops; healthcare), see Part IX.

What’s next. The next section (“How to Use This Book”) gives track-specific routes (Research • Engineering • Operations) and a reproducibility pack (datasets, unit tests, gluing checks).

 

How to Use This Book

This book is designed as a belt you can enter from multiple edges. Pick the track that matches your role, follow the reading path, and grab the artifacts you need.


Tracks

  • (R) Research — proofs, invariants, identifiability, benchmarks.

  • (E) Engineering — estimators, APIs, data schemas, controllers.

  • (O) Operations — dashboards, ledgers in domain units, SOPs.


Reading paths

  • R: Part I → III → V
    Foundations of belts & PBHL → Macro work–entropy ledger → Controllers & stability.

  • E: Part II → VIII → IX
    Discrete calculus & estimation → Data/Repo schemas → Domain implementations.

  • O: Part VII → IX → X
    Coherence, KPIs & governance → Domain playbooks → Validation & audits.

Tip: If you’re crossing tracks (e.g., Ops leader with an engineering team), skim the first section of each part you skip for vocabulary alignment.


Pick-your-chapter table

Goal Start Here Then Output You’ll Get
Prove PBHL and belt gluing I.2–I.4 I.7 (4π tests) Lemmas, invariants checklist
Turn Purpose into a field I.1 III.1–III.3 AΠ, FΠ\mathcal{A}_\Pi,\ \mathcal{F}_\Pi cheat-sheet
Build the ledger in your units III.2 VII.2, IX.* Work/entropy ledger template (shoes, orders, bps…)
Estimate flux from logs II.3 VIII.1–VIII.3 Minimal estimator + confidence bands
Control gaps (close Plan↔Do) V.1–V.3 V.4–V.5 Flux-gates & twist-stepping playbook
Stand up a dashboard VII.1 VII.3, IX.* KPIs, alerts, SOP snippets
Run validation X.1 (Stokes/gluing) X.2 (periodicity) Test suite & acceptance criteria
Translate to a new domain IX.0 (pattern) IX.[your domain] Domain mapping worksheet

Artifacts you can reuse

  • Datasets & repos: sample belt logs, reference estimators, controller stubs, dashboard notebooks — see Appendix I for links and structure.

  • Templates:

    • Ledger sheet (macro work–entropy)

    • Controller spec (flux-gate / twist-step)

    • Validation pack (two-boundary Stokes, gluing, 4π periodicity)

  • Glossary & symbols: quick cards in Appendix J.

  • One-pagers: PBHL diagram, “Gap = Flux + Twist” cheats, and SOP checklists (pre-flight / post-mortem).


How to read efficiently

  1. Skim the one-page belt diagram in the Preface; it recurs in every Part.

  2. Open the pick-your-chapter table and jump straight to your goal.

  3. When stuck, consult Appendix E (Core Math Quick Start) and Appendix J (Glossary).

  4. For anything you want to run, grab the Appendix I repo pointers first, then follow the chapter’s “Runbook” box.

 

Notation, Symbols, and Conventions

This page fixes the symbols and sign rules used throughout PFBT. When in doubt, return here and the quick “outer-minus-inner” sanity check at the end.

Core geometric objects

  • Edges (plan/do):
    Γ+\Gamma_{+} = plan edge, Γ\Gamma_{-} = do edge.
    Both are oriented 1-curves living on the same state manifold X\mathcal{X} and parameterized by s[0,1]s\in[0,1].

  • Belt (the ribbon):
    B\mathcal{B} = an oriented 2-surface whose boundary is the two edges:

    B=Γ+    (Γ).\partial\mathcal{B}=\Gamma_{+}\;\sqcup\;(-\Gamma_{-}) .

    Read: the belt’s boundary is “outer minus inner”.

  • Framing & twist:
    A smooth unit normal/framing n\mathbf{n} along B\mathcal{B} defines the twist
    Tw(B,n)12Z\mathrm{Tw}(\mathcal{B},\mathbf{n})\in \tfrac12\mathbb{Z}.
    Convention: right-handed (clockwise when looking along +n+\mathbf{n}) half-twist is +12+\tfrac12.

Purpose connection and curvature

  • Purpose connection (1-form): AΠ\mathcal{A}_{\Pi}.
    Think “connection for purpose/志 transport” along edges. Units below.

  • Purpose curvature (2-form): FΠ\mathcal{F}_{\Pi}.

    • Abelian case (default): FΠ=dAΠ\mathcal{F}_{\Pi}=d\mathcal{A}_{\Pi}.

    • Non-Abelian note (when we track multi-purpose stacks): FΠ=dAΠ+AΠAΠ\mathcal{F}_{\Pi}=d\mathcal{A}_{\Pi}+\mathcal{A}_{\Pi}\wedge\mathcal{A}_{\Pi}.

  • Holonomy along an edge:

    HolΠ(Γ)  =  ΓAΠ(Abelian; for non-Abelian use logPexpΓAΠ).\mathrm{Hol}_{\Pi}(\Gamma)\;=\;\oint_{\Gamma}\mathcal{A}_{\Pi} \quad \text{(Abelian; for non-Abelian use }\log\mathrm{P}\exp\oint_{\Gamma}\mathcal{A}_{\Pi}\text{).}
  • Belt holonomy difference:
    ΔHolΠ(B)HolΠ(Γ+)HolΠ(Γ)\Delta\mathrm{Hol}_{\Pi}(\mathcal{B})\equiv \mathrm{Hol}_{\Pi}(\Gamma_{+})-\mathrm{Hol}_{\Pi}(\Gamma_{-}).

PBHL (Purpose Belt Holonomy Law)

With the above orientations,

  ΔHolΠ(B)  =  BFΠ  +  2πTw(B,n)  +  2πk  ,    kZ  \boxed{\; \Delta\mathrm{Hol}_{\Pi}(\mathcal{B}) \;=\;\iint_{\mathcal{B}}\mathcal{F}_{\Pi}\;+\;2\pi\,\mathrm{Tw}(\mathcal{B},\mathbf{n}) \;+\;2\pi k\;,\;\;k\in\mathbb{Z} \;}

The 2πk2\pi k term captures integer gauge periods / branch choices (drops out in the ledger once calibrated).

Flux face & ledgers (names only; detailed in later chapters)

  • Flux face density (through the belt): denote by JJ (a 2-form on B\mathcal{B}) when needed.

  • Macro work–entropy ledger: W ⁣E\mathsf{W\!E} maps ΔHolΠ\Delta\mathrm{Hol}_{\Pi}, BJ\iint_{\mathcal{B}}J and Tw\mathrm{Tw} into output units (e.g., “pairs of shoes”) and costs (WIP, changeovers, rework).

Indices, coordinates, and forms

  • State coordinates: xμx^{\mu} on X\mathcal{X}, μ=1,,d\mu=1,\dots,d.

  • Edge parameter: ss (monotone with the edge’s orientation).

  • Semantic tick (collapse clock): τ\tau when explicit; edges may be lifted to (s,τ)(s,\tau).

  • Index conventions: Greek μ,ν\mu,\nu for manifold; Latin i,ji,j for local frames. Wedge \wedge is exterior product; dd is exterior derivative.

Orientation & sign rules

  • Boundary orientation: B=Γ+(Γ)\partial\mathcal{B}=\Gamma_{+}\sqcup(-\Gamma_{-}).
    If n\mathbf{n} is the belt’s chosen normal, then the boundary’s direction follows the right-hand rule: walking with the boundary orientation keeps B\mathcal{B} on your left.

  • Stokes with the belt:

    Γ+ ⁣ ⁣AΠΓ ⁣ ⁣AΠ  =  B ⁣dAΠ(plus twist/gauge periods as above).\oint_{\Gamma_{+}}\!\!\mathcal{A}_{\Pi}-\oint_{\Gamma_{-}}\!\!\mathcal{A}_{\Pi} \;=\;\iint_{\mathcal{B}}\!d\mathcal{A}_{\Pi}\quad(\text{plus twist/gauge periods as above}).
  • “Outer minus inner” sanity check: if FΠ\mathcal{F}_{\Pi} is everywhere >0>0 on B\mathcal{B} with the chosen orientation, then ΔHolΠ>0\Delta\mathrm{Hol}_{\Pi}>0.

Units and calibration

Let [Π][\Pi] denote the purpose unit (dimension “purpose”), and [W][\mathsf{W}] the macro-work unit tied to your output.

  • [AΠ]=[W]/[Π][\mathcal{A}_{\Pi}]=[\mathsf{W}]/[\Pi] per unit length along an edge (line work-density per purpose).

  • [FΠ]=[W]/[Π][\mathcal{F}_{\Pi}]=[\mathsf{W}]/[\Pi] per unit area on the belt (face work-density per purpose).

  • Calibration constant: choose KΠK_{\Pi} so that

    Workmacro=KΠΔHolΠ,KΠ2π  equals “one output quantum” (e.g., 1 pair).\mathsf{Work}_{\text{macro}}=K_{\Pi}\,\Delta\mathrm{Hol}_{\Pi},\qquad K_{\Pi}\cdot 2\pi\;\text{equals “one output quantum” (e.g., 1 pair)}.

This choice makes 2π2\pi (one full twist / one period of holonomy) a meaningful, auditable unit.

Gauge, basepoint, and invariances

  • Gauge: AΠAΠ+dχ\mathcal{A}_{\Pi}\mapsto\mathcal{A}_{\Pi}+d\chi (Abelian) leaves FΠ\mathcal{F}_{\Pi} invariant; ΔHolΠ\Delta\mathrm{Hol}_{\Pi} shifts by integer periods already accounted for by kk.

  • Basepoint invariance: edge holonomies are independent of the starting point; in non-Abelian settings use the conjugacy class (trace of Wilson loop) or its principal log—differences cancel in ΔHolΠ\Delta\mathrm{Hol}_{\Pi}.

  • Reparameterization: all line/surface integrals are parametrization-independent.

Quick checks before you compute

  1. Sign sanity: verify B=Γ+(Γ)\partial\mathcal{B}=\Gamma_{+}\sqcup(-\Gamma_{-}). If you accidentally flip the belt, both FΠ\mathcal{F}_{\Pi} and Tw\mathrm{Tw} signs flip; ΔHolΠ\Delta\mathrm{Hol}_{\Pi} must flip too.

  2. Basepoint: for non-Abelian logs, use the same branch on both edges or compare via a trace (basepoint-safe).

  3. Unit lock: confirm your KΠK_{\Pi} so that 2π2\pi maps to a concrete output quantum in the ledger.

Appendix A (Orientation Cookbook) lists pictorial right-hand rules, the twist counting convention, and minimal gauge/trace recipes you can reuse in derivations.

 

Part I — First Principles

 

1. Why Belts, Not Lines

Goals — from two traces to a worldsheet

Any process that logs two complementary traces—e.g., Plan/Reference vs Do/Realized—admits a minimal ribbon (belt) whose boundary is those two edges. Line models hide surface-only invariants; the belt restores them and makes the edge gap depend on a face (flux + twist).

Results

  • Dual-trace completeness axiom.
    If a system records (i) a reference/plan trace and (ii) a realized/execution trace over the same state manifold, then there exists an oriented annular patch B\mathcal B with boundary the two traces; all edge–edge differences factor through B\mathcal B’s interior (the “face”).

  • Existence of annular patch for any logged Plan/Do pair.
    Formal existence follows the two-boundary worldsheet construction (SK doubling / non-Abelian Stokes) specialized to operational logs: a smooth belt B\mathcal B with B=Γ+(Γ)\partial\mathcal B=\Gamma_+\sqcup(-\Gamma_-) always exists (thin-belt limit if needed).

Constructs

  • Boundary identity

    B  =  Γ+    (Γ)(“outer minus inner”).\partial\mathcal B \;=\; \Gamma_+ \;\sqcup\;(-\Gamma_-)\quad(\text{“outer minus inner”}).
  • Belt parametrization
    Use X:[0,1]×[0,1]X\mathbf X:[0,1]\times[0,1]\to\mathcal X, X(s,0)Γ, X(s,1)Γ+\mathbf X(s,0)\in\Gamma_-,\ \mathbf X(s,1)\in\Gamma_+. The induced orientation is (s,u)(\partial_s,\partial_u). This is the canonical setup used throughout Parts I–II.

Figures (described)

  • Dirac-belt sketch. A narrow ribbon with a chosen normal field; shows why framing/twist matters even when the centerline is unchanged. (Motivates the twist term that will enter PBHL.)

  • Plan/Do ribbon. Two logged polylines (Plan on top, Do below) joined into B\mathcal B; the face carries purpose flux; edges carry holonomies. This is the running diagram used all book long.

Checks — Two-boundary Stokes (Abelian) on a toy belt

Let the belt coordinates be (s,u)[0,1]2(s,u)\in[0,1]^2. Take an Abelian 1-form A=f(s,u)dsA=f(s,u)\,ds. Then F=dA=(uf)dudsF=dA=(\partial_u f)\,du\wedge ds.

  • Edge integrals.
    Γ+ ⁣AΓ ⁣A=01f(s,1)ds01f(s,0)ds\displaystyle \oint_{\Gamma_+}\!A-\oint_{\Gamma_-}\!A=\int_0^1 f(s,1)\,ds-\int_0^1 f(s,0)\,ds.

  • Face integral.
    B ⁣F=01 ⁣ ⁣01uf(s,u)duds=01f(s,1)ds01f(s,0)ds\displaystyle \iint_{\mathcal B}\!F=\int_0^1\!\!\int_0^1 \partial_u f(s,u)\,du\,ds = \int_0^1 f(s,1)\,ds-\int_0^1 f(s,0)\,ds.
    So

 Γ+ ⁣AΓ ⁣A=B ⁣F (orientation: “upper minus lower”).\boxed{\ \oint_{\Gamma_+}\!A-\oint_{\Gamma_-}\!A=\iint_{\mathcal B}\!F\ }\quad \text{(orientation: “upper minus lower”).}

Sanity test. Choose f(s,u)=BuF=Bdudsf(s,u)=B\,u\Rightarrow F=B\,du\wedge ds. Then LHS =B=B, RHS =area×B=B=\text{area}\times B=B. This matches the two-boundary Stokes sign convention we use later (and generalizes to non-Abelian with surface ordering).

Artifacts — Minimal JSON for dual traces (full spec in Ch31)

A tiny, log-first schema to reconstruct a belt from real data (polyline edges + optional twist frames):

{
  "plan_edge": [
    {"t":"2025-01-01T00:00:00Z","x":[...], "meta":{"ver":"plan_v3"}},
    {"t":"2025-01-01T00:05:00Z","x":[...]}
  ],
  "do_edge": [
    {"t":"2025-01-01T00:00:30Z","x":[...], "meta":{"line_id":"A1"}},
    {"t":"2025-01-01T00:05:20Z","x":[...]}
  ],
  "twist_frames": [
    {"t":"2025-01-01T00:02:00Z","policy":"day_count=30/360"},
    {"t":"2025-01-01T00:04:00Z","prompt_id":"style_v2"}
  ],
  "units": {"x":"state coords","time":"UTC"}
}
  • plan_edge, do_edge: ordered samples define Γ+\Gamma_+, Γ\Gamma_-.

  • twist_frames: governance/framing changes along edges (used later to estimate Tw).

  • This is the seed for the Part VIII / Ch31 full schemas (PlanEdge, RealizedEdge, TwistFrame, etc.).


Where this points. With belts in place, Part I.2 will elevate Purpose/志 to a connection AΠ\mathcal A_\Pi; its curvature FΠ\mathcal F_\Pi will be the driver of macro work, and the eventual PBHL will read “edge gap = purpose flux + twist.”

 

2. Purpose as a Field

Goals — elevate “志 / Purpose” to geometry

We model Purpose (志) as a connection field on the belt: a 1-form AΠ\mathcal A_{\Pi} whose curvature FΠ\mathcal F_{\Pi} drives macro work across the face; framing/governance enters as Tw on the edges. This is the operational heart of PFBT and the step that makes “pairs of shoes” (or any domain unit) auditable.


Results — the three primitives

  • Purpose connection: AΠΩ1(X)\displaystyle \mathcal A_{\Pi}\in \Omega^{1}(\mathcal X).

  • Purpose curvature: FΠ=dAΠ+AΠAΠ\displaystyle \mathcal F_{\Pi} = d\mathcal A_{\Pi} + \mathcal A_{\Pi}\wedge \mathcal A_{\Pi} (Abelian case uses dAΠd\mathcal A_{\Pi}).

  • Purpose current (face-side evidence): JΠJ_{\Pi} (2-form or density over B\mathcal B) used in the ledger and estimation.
    These objects feed the belt identity (PBHL) later: edge gap = purpose flux + twist.


Constructs — continuity & gauge

  • Purpose continuity (phenomenology):

    tρΠ+ ⁣JΠ  =  σΠ,\partial_t \rho_{\Pi} + \nabla\!\cdot J_{\Pi} \;=\; \sigma_{\Pi},

    where ρΠ\rho_{\Pi} is purpose density on state, JΠJ_{\Pi} the observed face flow (events that “advance purpose”), and σΠ\sigma_{\Pi} sources/sinks (e.g., mandate changes). This gives a practical bridge between logs and FΠ\mathcal F_{\Pi}: when σΠ ⁣ ⁣0\sigma_{\Pi}\!\approx\!0, persistent edge gaps imply non-conservative FΠ0\mathcal F_{\Pi}\neq 0.

  • Gauge notion:
    AΠAΠ+dχ\mathcal A_{\Pi}\mapsto \mathcal A_{\Pi}+d\chi leaves FΠ\mathcal F_{\Pi} invariant; scalar readouts use class-function invariants (e.g., argdet\arg\det, tr\mathrm{tr}) to avoid basepoint/order artifacts on edges (details in Part II/IX).


Figures — conservative vs non-conservative cartoons

  • Conservative purpose: streamlines on B\mathcal B close; BFΠ ⁣= ⁣0\iint_{\mathcal B}\mathcal F_{\Pi}\!=\!0; any edge gap must be twist-only → governance reparam fixes it.

  • Non-conservative purpose: streamlines spiral across the face; BFΠ ⁣ ⁣0\iint_{\mathcal B}\mathcal F_{\Pi}\!\neq\!0; flux does macro work (ledger credit), while twist is the minimal framing cost to reconcile Plan↔Do.


Checks — identifiability preconditions (see Part IV Ch.15 “Observability”)

You can estimate AΠ\mathcal A_{\Pi} / FΠ\mathcal F_{\Pi} (up to gauge) when:

  1. Dual traces Γ±\Gamma_\pm are logged with consistent orientation/timebase,

  2. Face evidence JΠJ_{\Pi} (events/defects/throughputs) is timestamped to tile B\mathcal B,

  3. Twist frames (policy/prompt/version changes) are recorded on edges, and

  4. Gluing tests (two-boundary Stokes; basepoint/order invariance) pass on held-out belts.


Artifacts — PurposeField data-product contract (see Ch.31 schemas)

Minimal contract for moving from logs → fields (pairs with PlanEdge, RealizedEdge):

{
  "purpose_field": {
    "id": "PF_shoefactory_v1",
    "gauge": "abelian:u1", 
    "calibration": { "K_pi": 12.5663706144, "unit_quantum": "1_pair_shoes" },
    "A_pi_edge_samples": [
      {"edge":"plan","t":"2025-01-01T00:00Z","a_pi": 0.12},
      {"edge":"do","t":"2025-01-01T00:00Z","a_pi": 0.10}
    ],
    "F_pi_face_tiles": [
      {"tile_id":"b:12-13","t0":"...","t1":"...","f_pi": 0.018,"evidence_ref":["evt_991","evt_1002"]}
    ],
    "twist_frames": [
      {"edge":"plan","t":"2025-01-01T00:02Z","label":"policy_v2","delta_tw": 0.5}
    ],
    "units": { "A_pi":"work-per-purpose·per-length", "F_pi":"work-per-purpose·per-area" }
  }
}
  • K_pi maps 2π2\pi holonomy to one output quantum (your domain unit).

  • A_pi_edge_samples and F_pi_face_tiles support PBHL auditing and the macro work–entropy ledger.

  • twist_frames track governance cost for the ledger’s entropy term.


Where this points. Next we state PBHL precisely and show how BFΠ\iint_{\mathcal B}\mathcal F_{\Pi} and Tw explain the measured edge gap—with invariants and tests that generalize Stokes to the two-boundary belt.

 

3. The Purpose Belt Holonomy Law (PBHL)

Goals — state and interpret the law

On a two-boundary belt B\mathcal B with edges Γ±\Gamma_\pm, the measurable edge gap equals a surface-ordered curvature response times a framing (twist) phase. In the purpose setting, the curvature is the purpose drive.


Result — PBHL (non-Abelian, framed form)

HolΠ(Γ+)HolΠ(Γ)1  =  Sexp ⁣( ⁣ ⁣B ⁣W1FΠW)    eiαTw\boxed{ \operatorname{Hol}_\Pi(\Gamma_+)\,\operatorname{Hol}_\Pi(\Gamma_-)^{-1} \;=\; \mathcal S\exp\!\Big(\!\!\iint_{\mathcal B}\! W^{-1}\,\mathcal F_\Pi\,W\Big)\;\cdot\;e^{\,i\,\alpha\,\mathrm{Tw}} }
  • FΠ=dAΠ+AΠAΠ\mathcal F_\Pi=d\mathcal A_\Pi+\mathcal A_\Pi\wedge\mathcal A_\Pi is the purpose curvature (Abelian: dAΠd\mathcal A_\Pi).

  • WW is the Wilson transport from a fixed basepoint to each face point (keeps the surface object gauge-covariant).

  • Sexp\mathcal S\exp is the surface-ordered exponential on the annulus.

  • Tw\mathrm{Tw} is the belt twist (framing); α\alpha is a calibrated sector constant (often tied to 2π2\pi units).
    This is the framed belt law specialized to Purpose/志; proofs/derivations mirror FBHL/SBHL in the Belt Theory notes.

Interpretation.
Left side = edge-to-edge holonomy gap (Plan minus Do).
Right side = purpose flux through the face (ordered, gauge-covariant) × a scalar twist phase from framing that survives the thin-belt limit. A single unframed line cannot capture this twist.


Constructs — Wilson transport and class-function invariants

Wilson transport WW. Choose a smooth radial path family in B\mathcal B from the basepoint; WW parallel-transports FΠ\mathcal F_\Pi to compare contributions at a common fiber. The surface object is independent of the particular radial choice up to conjugation at the basepoint.

Class-function invariants. Since the RHS is defined up to boundary conjugation, use class functions (e.g., tr\mathrm{tr}, argdet\arg\det, characters) to extract scalar, gauge-robust readouts for logging and ledgers:

ϕgap1kargdet ⁣(HolΠ(Γ+)HolΠ(Γ)1)    1kargdet(SeW1FΠW)+αTw    (mod2π).\phi_{\text{gap}} \equiv \frac{1}{k}\arg\det\!\Big(\operatorname{Hol}_\Pi(\Gamma_+)\operatorname{Hol}_\Pi(\Gamma_-)^{-1}\Big) \;\equiv\; \frac{1}{k}\arg\det\Big(\mathcal S e^{\iint W^{-1}\mathcal F_\Pi W}\Big) + \alpha\,\mathrm{Tw}\;\;(\bmod 2\pi).

These are reparametrization-independent and converge under annulus refinement.


Procedures — scalar invariant pipeline for U(k)U(k)

  1. Fix belt order (lower→upper; then along ss) and a basepoint. Build an annular mesh satisfying the refinement condition.

  2. Compute WW on each face cell (radial Wilson lines), assemble Sexp ⁣W1FΠW\mathcal S\exp\!\iint W^{-1}\mathcal F_\Pi W.

  3. Edge holonomies. Compute HolΠ(Γ±)\operatorname{Hol}_\Pi(\Gamma_\pm) or directly the surface form (recommended).

  4. Reduce to a scalar via a class function: argdet\arg\det (projective U(k)U(k)), or 1kImlogTr\tfrac{1}{k}\mathrm{Im}\,\log\mathrm{Tr} for stable phases.

  5. Twist estimation. Integrate the framing connection along the boundary (or read from recorded twist frames) to get Tw\mathrm{Tw}; apply the calibrated α\alpha.

  6. Calibrate α\alpha and units. Fix α\alpha so that a 2π2\pi change corresponds to one output quantum in the ledger (e.g., 1 pair of shoes).

  7. Log invariants (ϕgap,FΠ,Tw)(\phi_{\text{gap}}, \iint \mathcal F_\Pi, \mathrm{Tw}) with confidence bands; store mesh metadata for reproducibility.


Checks — Abelian recovery and composition sanity

  • Abelian recovery. With FΠ=dAΠ\mathcal F_\Pi=d\mathcal A_\Pi and WIW\equiv I, PBHL reduces to two-boundary Stokes:
    Γ+AΠΓAΠ=BdAΠ\oint_{\Gamma_+}\mathcal A_\Pi-\oint_{\Gamma_-}\mathcal A_\Pi=\iint_{\mathcal B} d\mathcal A_\Pi, with a separate scalar eiαTwe^{i\alpha\,\mathrm{Tw}} factor.

  • Composition/gluing. Concatenating belts along a common edge composes surface-ordered exponentials; twists add: Tw(B2 ⁣ ⁣B1)=Tw(B1)+Tw(B2)\mathrm{Tw}(\mathcal B_2\!\circ\!\mathcal B_1)=\mathrm{Tw}(\mathcal B_1)+\mathrm{Tw}(\mathcal B_2). Class-function readouts remain equal up to conjugation. (Used later in Ch.5 Stokes/partition invariance and Ch.9 variational consequences.)


Artifacts — unit-test checklist (referenced in Ch.43)

  • T1 Abelian Stokes: constant 1-form on a toy belt → edge gap = area × field.

  • T2 Refinement/gluing: subdivide the belt; interior edges cancel; scalar invariant unchanged.

  • T3 Orientation flip: flip B\partial\mathcal B → signs of gap/flux/twist all flip coherently. (Sanity.)

  • T4 4π\pi periodicity: rotate framing by 4π4\pi → scalar invariants unchanged (quantization).

  • T5 Composition law: glue two belts; class-function phases add; twist adds.

  • T6 Thin-belt limit: area term shrinks; residual finite twist persists (framing anomaly).

  • T7 Purpose calibration: set α\alpha so that 2π2\pi maps to one unit of output in the macro work ledger.

Outcome: after PBHL passes these tests on your data, the macro work–entropy ledger can safely use ϕgap\phi_{\text{gap}}, FΠ\iint\mathcal F_\Pi, and Tw\mathrm{Tw} as auditable primitives.

 

4. Framing and Twist

Goals — governance/interpretation as twist

In PFBT, governance/interpretation changes (policies, prompts, pricing rules, SOPs, model styles) are not afterthoughts—they are encoded as a framing field along the belt’s edges. The twist of this framing is the edge-only contribution that, together with face flux, explains the Plan↔Do gap in PBHL. Operationally, you will log twist steps as discrete policy changes; mathematically, you’ll also capture continuous roll of the frame along the edge.


Result — twist from a framed ribbon

Let t(s)\mathbf t(s) be the unit tangent of the edge centerline (plan or do) and u(s)\mathbf u(s) a unit framing vector with u ⁣ ⁣t=0\mathbf u\!\cdot\!\mathbf t=0 (the governance/interpretation axis you choose to carry along the edge). The twist of the ribbon is

Tw  =  12π01(t(s)×u(s))su(s)  ds\boxed{\quad \mathrm{Tw} \;=\; \frac{1}{2\pi}\int_{0}^{1} \big(\,\mathbf t(s)\times \mathbf u(s)\big)\cdot \partial_s\mathbf u(s)\;ds \quad}

Conventions (kept book-wide):

  • Orientation: right-hand rule from the belt’s normal.

  • Counting: a clockwise half-twist viewed along +n+\mathbf n is +12+\tfrac12; hence Tw12Z\mathrm{Tw}\in \tfrac12\mathbb Z.

  • PBHL phase: the edge framing contributes eiαTwe^{\,i\,\alpha\,\mathrm{Tw}}.

Framing quantization → α2πZ \alpha\in 2\pi\mathbb Z.
For ledgers we adopt 2π invariance (a full 360° policy roll does not change scalar outputs). Since ΔTw=1\Delta \mathrm{Tw}=1 under a 2π roll,

eiαΔTw=1    α2πZ.e^{\,i\,\alpha\,\Delta\mathrm{Tw}}=1 \;\Rightarrow\; \alpha\in 2\pi\mathbb Z .

(Research note: a 4π-periodic spinorial mode is available by relaxing to απZ\alpha\in\pi\mathbb Z; we default to 2π for operational invariance.)


Procedures — discrete twist estimators

You’ll use one of three estimators depending on data granularity. All assume a sampled edge {xk}k=0N\{x_k\}_{k=0}^{N} (monotone in ss or time) with an associated frame (tk,uk,vk=tk×uk)(\mathbf t_k,\mathbf u_k,\mathbf v_k=\mathbf t_k\times\mathbf u_k).

A) Midpoint (angle accumulation)

  1. tk=xk+1xkxk+1xk\mathbf t_k=\frac{x_{k+1}-x_k}{\|x_{k+1}-x_k\|}.

  2. Transport uk\mathbf u_k to the next station by projecting onto the new normal plane:
    u~k+1=uk(uk ⁣ ⁣tk+1)tk+1\widetilde{\mathbf u}_{k+1}=\mathbf u_k-(\mathbf u_k\!\cdot\!\mathbf t_{k+1})\mathbf t_{k+1}, normalize.

  3. Compute roll around tk+1/2\mathbf t_{k+1/2}:
    Δϕk=atan2 ⁣((u~k+1×uk+1) ⁣ ⁣tk+1/2,  u~k+1 ⁣ ⁣uk+1)\Delta\phi_k=\mathrm{atan2}\!\big((\widetilde{\mathbf u}_{k+1}\times \mathbf u_{k+1})\!\cdot\!\mathbf t_{k+1/2},\; \widetilde{\mathbf u}_{k+1}\!\cdot\!\mathbf u_{k+1}\big).

  4. Sum: Tw^=12πkΔϕk\widehat{\mathrm{Tw}}=\dfrac{1}{2\pi}\sum_k \Delta\phi_k.

B) Quaternion (robust on noisy tangents)

  1. Fit unit quaternions qkq_k such that qkq_k maps a fixed reference triad to (tk,uk,vk)(\mathbf t_k,\mathbf u_k,\mathbf v_k).

  2. Relative rotation: rk=qk+1qk1r_k=q_{k+1}\,q_k^{-1}. Extract the rotation axis–angle (ω^k,θk)(\hat{\omega}_k,\theta_k).

  3. Project the rotation onto the tangent: Δϕk=θk(ω^k ⁣ ⁣tk+1/2)\Delta\phi_k = \theta_k\,(\hat{\omega}_k\!\cdot\!\mathbf t_{k+1/2}).

  4. Tw^=12πkΔϕk\widehat{\mathrm{Tw}}=\dfrac{1}{2\pi}\sum_k \Delta\phi_k.
    Benefits: numerically stable, avoids gimbal lock.

C) Spline (smooth data)

  1. Fit C1C^1 splines to t(s),u(s)\mathbf t(s),\mathbf u(s).

  2. Evaluate the twist density ωs(s)=(t×u)su\omega_s(s)=(\mathbf t\times\mathbf u)\cdot\partial_s\mathbf u.

  3. Integrate with Simpson’s rule: Tw^=12πωs(s)ds\widehat{\mathrm{Tw}}=\dfrac{1}{2\pi}\int \omega_s(s)\,ds.

Twist steps from governance logs.
When a policy/prompt/version change occurs at sample kk, add the logged step Δϕk(policy)\Delta\phi_k^{\text{(policy)}} to the continuous roll before dividing by 2π2\pi. This creates a hybrid estimator:

Tw^=12π(kΔϕk(geom)+jpolicyΔϕj(policy)).\widehat{\mathrm{Tw}}=\frac{1}{2\pi}\Big(\sum_k \Delta\phi_k^{\text{(geom)}}+\sum_{j\in\text{policy}} \Delta\phi_j^{\text{(policy)}}\Big).

Figures (described)

  • 2π & 4π rotations: show a belt whose ends are fixed while the frame rotates by 360° (Tw + ⁣1+\!1) and 720° (Tw + ⁣2+\!2); PBHL’s scalar phase stays invariant by our α\alpha choice.

  • Twist steps as policy changes: a timeline on the edge with markers (pricing_v3 → v4, prompt_v1 → v2), each contributing a discrete roll increment.


Checks — 4π periodicity test (see Ch.43 test pack)

T-4π: apply two sequential frame rotations while keeping the face flux constant; assert:

  • Scalar invariants (e.g., argdet\arg\det gap, ledger outputs) unchanged.

  • Logged Tw\mathrm{Tw} increases by 2; PBHL’s twist phase eiαTwe^{i\alpha\mathrm{Tw}} stays unit with α2πZ\alpha\in 2\pi\mathbb Z.

  • Composition sanity: performing two 2π tests back-to-back equals one 4π test (additivity of Tw\mathrm{Tw}).


Artifacts — TwistFrame schema (used in Ch.31)

{
  "twist_frames": [
    {
      "edge": "plan",                      // "plan" | "do"
      "t": "2025-01-01T00:04:00Z",        // timestamp on the edge log
      "policy_id": "pricing_v4",          // governance label (free text)
      "prompt_id": "style_v2",            // optional (LLM, UI theme, etc.)
      "frame_quat": [0.998, 0.010, 0.050, 0.030], // optional absolute frame (w,x,y,z)
      "delta_roll_deg": 180,              // optional discrete step in degrees (sign by right-hand rule)
      "notes": "monthly policy roll-over"
    }
  ],
  "conventions": {
    "right_hand_rule": true,
    "tw_units": "turns",                  // "turns" (1 turn = 2π), or "radians"
    "alpha": 6.283185307179586           // default α = 2π for ledger invariance
  }
}

Usage notes.

  • If frame_quat is present at multiple samples, prefer the quaternion estimator and treat delta_roll_deg as a discrete addition.

  • If only policy steps are logged, you still get a valid twist by summing steps—useful for business processes with sparse geometry.

  • Always record the conventions block to make PBHL’s twist phase reproducible.


Where this points. With twist operationalized, PBHL’s gap = flux + twist is fully computable: the next chapter (Ch.5) glues belts, proves composition laws, and prepares the scalar invariants you’ll use in ledgers and controllers.

 

5. Axioms, Invariants, and Composition (Gluing)

Goals

Post the axioms of PFBT belts, define the invariants you will compute, and give the gluing law that makes multi-belt reasoning compositional.


5.1 Axioms (minimal set)

A1 — Dual-trace completeness.
Given co-logged edges Γ+\Gamma_+ (Plan) and Γ\Gamma_- (Do) on the same state manifold X\mathcal X, there exists an oriented belt B\mathcal B with boundary

B  =  Γ+    (Γ).\partial \mathcal B \;=\; \Gamma_+ \;\sqcup\; (-\Gamma_-).

A2 — Orientation & sign.
All face integrals and twist counts use the boundary orientation above (“outer minus inner”). Flipping B\mathcal B flips the signs of edge gap, face flux, and twist coherently.

A3 — Gauge equivalence.
For the purpose connection AΠ\mathcal A_\Pi, AΠAΠ+dχ\mathcal A_\Pi\mapsto \mathcal A_\Pi+d\chi leaves FΠ\mathcal F_\Pi invariant. Edge holonomies change by conjugation/periods; class-function readouts (trace/character/argdet\arg\det) are invariant.

A4 — Framing periodicity.
Twist Tw12Z\mathrm{Tw}\in \tfrac12\mathbb Z. Operational default: 2π invariance, i.e. α2πZ\alpha\in 2\pi\mathbb Z so one full 2π roll does not change scalar outputs.

A5 — Refinement & stability.
Subdivide B\mathcal B (add interior seams) without changing any scalar invariant; interior edges cancel. Scalar outputs are mesh-independent.

A6 — Gluing (existence).
If two belts share a seam edge with compatible orientation and frame, they admit a glued belt whose boundary is the remaining two external edges.


5.2 Invariants you will actually use

Let

ΔHolΠ    HolΠ(Γ+)HolΠ(Γ)1  =  Sexp ⁣( ⁣ ⁣BW1FΠW)eiαTw.\Delta\mathrm{Hol}_\Pi \;\equiv\; \mathrm{Hol}_\Pi(\Gamma_+)\,\mathrm{Hol}_\Pi(\Gamma_-)^{-1} \;=\; \mathcal S\exp\!\Big(\!\!\iint_{\mathcal B}W^{-1}\mathcal F_\Pi W\Big)\cdot e^{i\alpha\,\mathrm{Tw}}.

I1 — Gap phase (class function).

ϕgap    1kargdet(ΔHolΠ)(mod 2π).\phi_{\text{gap}}\;\equiv\;\frac{1}{k}\arg\det\big(\Delta\mathrm{Hol}_\Pi\big)\quad (\bmod\ 2\pi).

I2 — Face flux scalar.

ϕflux    1kargdet ⁣(Sexp ⁣BW1FΠW).\phi_{\text{flux}}\;\equiv\;\frac{1}{k}\arg\det\!\Big(\mathcal S\exp\!\iint_{\mathcal B}W^{-1}\mathcal F_\Pi W\Big).

I3 — Twist.
Tw(B,n)12Z\mathrm{Tw}(\mathcal B,\mathbf n)\in \tfrac12\mathbb Z (geometric + logged policy steps).

I4 — Ledger primitives.
Given calibration KΠK_\Pi where KΠ2πK_\Pi\cdot 2\pi equals one output quantum (e.g., 1 pair of shoes):

Wmacro  =  KΠϕgap,Σmacro  =  (dispersion + WIP-age + rework + twist-cost).W_{\text{macro}} \;=\; K_\Pi\,\phi_{\text{gap}}, \qquad \Sigma_{\text{macro}} \;=\; \text{(dispersion + WIP-age + rework + twist-cost)}.

Properties. (i) Conjugacy-invariant; (ii) parametrization-independent; (iii) additive under gluing (below) in the scalar/log domain; (iv) Lipschitz in belt width ww with constant supB ⁣FΠ\sup_{\mathcal B}\!\|\mathcal F_\Pi\| (width-scaling bound).


5.3 The gluing law (composition)

Suppose B1\mathcal B_1 and B2\mathcal B_2 share a seam edge Σ\Sigma with opposite orientations, same framing at the seam, and compatible basepoints/orderings. Define the glued belt

B  =  B2#ΣB1,B  =  Γ+(2)    (Γ(1)).\mathcal B\;=\;\mathcal B_2 \,\#_{\Sigma}\, \mathcal B_1, \qquad \partial\mathcal B \;=\; \Gamma^{(2)}_+ \;\sqcup\; \big(-\Gamma^{(1)}_-\big).

Then:

G1 — Interior edge cancels.
The seam’s contribution vanishes; surface-ordered exponentials multiply; scalar class-functions add:

ϕflux(B)  =  ϕflux(B2)+ϕflux(B1)(mod2π).\phi_{\text{flux}}(\mathcal B) \;=\; \phi_{\text{flux}}(\mathcal B_2) + \phi_{\text{flux}}(\mathcal B_1)\quad(\bmod 2\pi).

G2 — Twist additivity.

Tw(B)=Tw(B2)+Tw(B1).\mathrm{Tw}(\mathcal B)=\mathrm{Tw}(\mathcal B_2)+\mathrm{Tw}(\mathcal B_1).

G3 — Basepoint/ordering conjugacy.
At the matrix level,

ΔHolΠ(B)    ΔHolΠ(B2)  ΔHolΠ(B1)(conjugate at the seam basepoint).\Delta\mathrm{Hol}_\Pi(\mathcal B) \;\sim\; \Delta\mathrm{Hol}_\Pi(\mathcal B_2)\;\Delta\mathrm{Hol}_\Pi(\mathcal B_1) \quad(\text{conjugate at the seam basepoint}).

Any class-function (trace, argdet\arg\det, characters) gives a seam-independent scalar.

G4 — Variants.
If seam framings differ, the mismatch appears as an extra twist step concentrated on Σ\Sigma; add it to Tw\mathrm{Tw} before taking class-functions.


5.4 Procedures

5.4.1 Belt composition API (pseudo-spec)

types:
  Edge:
    id: string
    samples: [ {t: iso8601, x: vector, meta?: any} ]
    frame?: [ {t: iso8601, quat: [w,x,y,z]} ]

  Belt:
    id: string
    upper: Edge   # Γ_+
    lower: Edge   # Γ_-
    twist_frames?: [TwistFrame]
    mesh?: AnnulusMesh
    meta?: any

functions:
  normalize_edge(e: Edge, basepoint: 'first'|'nearest', order: 'forward'|'reverse') -> Edge

  glue(B2: Belt, seam: 'B2.lower', B1: Belt, seam: 'B1.upper',
       seam_policy: 'match|average|prefer_B2', reframe?: bool) -> Belt

  invariants(B: Belt, class_fn: 'argdet'|'trace'|Character, alpha: float)
    -> { phi_gap, phi_flux, Tw, diagnostics }

  aggregate(belts: Belt[], mode: 'series'|'parallel') 
    -> { phi_gap, phi_flux, Tw }  # series = gluing along seams

Rules.

  • normalize_edge ensures common orientation/timebase.

  • glue checks geometric seam proximity & frame compatibility; inserts a seam twist if needed.

  • invariants computes class-function scalars and logs conjugacy residuals (should be ~0).

  • aggregate(series) sums scalar invariants; aggregate(parallel) keeps edges disjoint and reports a vector (one invariant per belt).

5.4.2 Invariant aggregation

  • Series (glued): add ϕflux\phi_{\text{flux}}, add Tw\mathrm{Tw}, then recompute ϕgap\phi_{\text{gap}} (or add phases and reduce mod 2π2\pi).

  • Parallel (independent belts): maintain a tuple (ϕgap(m))m=1M(\phi_{\text{gap}}^{(m)})_{m=1}^M; dashboards can show stacked contributions.


5.5 Checks

C1 — Basepoint invariance.
Recompute ϕgap\phi_{\text{gap}} with different basepoints and radial Wilson families; assert change <ε<\varepsilon. If not, a seam is misframed or orderings differ.

C2 — Width-scaling bounds.
Dilate the belt width by wλww\mapsto \lambda w (fixed edges, interpolated interior). Then

ϕflux(λ)ϕflux(0)    λarea(B)supBFΠ(+ estimation error).\big|\phi_{\text{flux}}(\lambda)-\phi_{\text{flux}}(0)\big| \;\le\; \lambda\, \operatorname{area}(\mathcal B)\,\sup_{\mathcal B}\|\mathcal F_\Pi\| \quad(+\ \text{estimation error}).

Use this to set tolerance bands for thin-belt approximations.

C3 — Refinement/gluing regression.
Subdivide B\mathcal B into nn annuli, glue back; scalar invariants change <ε<\varepsilon. Failing this means nonconjugate seams or inconsistent twist units.


5.6 Artifact — “Belt Algebra” mini-spec

Objects. Belts B\mathcal B; edges Γ\Gamma; invariants (ϕflux,Tw)(\phi_{\text{flux}},\mathrm{Tw}) and ϕgap\phi_{\text{gap}}.

Operations.

  • Series gluing #Σ\#_\Sigma: associative up to conjugacy.

  • Reversal ()(\cdot)^\dagger: reverse orientation; signs flip:

    ϕflux(B)=ϕflux(B),Tw(B)=Tw(B).\phi_{\text{flux}}(\mathcal B^\dagger)=-\phi_{\text{flux}}(\mathcal B),\quad \mathrm{Tw}(\mathcal B^\dagger)=-\mathrm{Tw}(\mathcal B).
  • Identity I\mathbb I: zero-area, zero-twist belt; neutral for #\#.

  • Refinement \preceq: partial order by subdivision; invariants monotone-stable (exact under exact arithmetic, stable numerically).

Laws (scalar/class-function level).

  • Associativity: ϕ(B3#B2#B1)=ϕ(B3)+ϕ(B2)+ϕ(B1)\phi(\mathcal B_3\#\mathcal B_2\#\mathcal B_1)=\phi(\mathcal B_3)+\phi(\mathcal B_2)+\phi(\mathcal B_1).

  • Identity: ϕ(B#I)=ϕ(B)\phi(\mathcal B\#\mathbb I)=\phi(\mathcal B).

  • Inverse via reversal: ϕ(B#B)=0\phi(\mathcal B\#\mathcal B^\dagger)=0.

  • Twist additivity: Tw\mathrm{Tw} adds under #\#; spins count in half-turns; policy steps are additive.

  • Calibration consistency: with α2πZ\alpha\in 2\pi\mathbb Z, all ledger-level scalars are invariant under 2π2\pi framing rotations.

This algebra underwrites the unit tests you’ll run in Part X and the controller composition you’ll deploy in Part V.

 

6. Belt Domains & Two-Boundary Stokes/Gauss

Goals — orientation and two-boundary theorems

We formalize belts as oriented annular patches and state the two-boundary versions of Stokes/Gauss that underpin PBHL numerics. All signs follow the outer-minus-inner convention:

B=Γ+    (Γ).\partial\mathcal B=\Gamma_+\;\sqcup\;(-\Gamma_-).

6.1 Parametric belts and Jacobians

Let X:[0,1]×[0,1] ⁣ ⁣X\mathbf X:[0,1]\times[0,1]\!\to\!\mathcal X parametrize the belt:

X(s,0)Γ,X(s,1)Γ+,(s,u)[0,1]2,\mathbf X(s,0)\in\Gamma_-,\quad \mathbf X(s,1)\in\Gamma_+,\qquad (s,u)\in[0,1]^2,

with induced tangent basis Xs=sX, Xu=uX\mathbf X_s=\partial_s\mathbf X,\ \mathbf X_u=\partial_u\mathbf X.

  • Area element (embedded case): dS=Xs×XudsdudS= \|\mathbf X_s\times \mathbf X_u\|\,ds\,du; unit normal n=Xs×XuXs×Xu\mathbf n=\frac{\mathbf X_s\times\mathbf X_u}{\|\mathbf X_s\times\mathbf X_u\|}.

  • Area element (intrinsic): gab=Xa,Xb, a,b{s,u}g_{ab}=\langle \mathbf X_a,\mathbf X_b\rangle,\ a,b\in\{s,u\}; dS=detgdsdudS=\sqrt{\det g}\,ds\,du.

  • Boundary orientation: walking along B\partial\mathcal B keeps B\mathcal B on your left. Thus +Γ++\Gamma_+ is the u=1u=1 edge in the +s+s direction; Γ-\Gamma_- is the u=0u=0 edge in the s-s direction.


6.2 Two-boundary Stokes (Abelian form)

For a smooth 1-form AA on B\mathcal B with curvature F=dAF=dA,

  Γ+ ⁣A    Γ ⁣A  =  B ⁣F  \boxed{\; \oint_{\Gamma_+}\!A\;-\;\oint_{\Gamma_-}\!A \;=\; \iint_{\mathcal B}\!F \;}
  • In coordinates: if A=Asds+AuduA=A_s\,ds+A_u\,du, then F=(sAuuAs)dsduF=(\partial_s A_u-\partial_u A_s)\,ds\wedge du, and

Γ+ ⁣AΓ ⁣A=01 ⁣ ⁣As(s,1)ds01 ⁣ ⁣As(s,0)ds=01 ⁣ ⁣01 ⁣(sAuuAs)dsdu.\oint_{\Gamma_+}\!A-\oint_{\Gamma_-}\!A =\int_0^1\!\!A_s(s,1)\,ds - \int_0^1\!\!A_s(s,0)\,ds =\int_0^1\!\!\int_0^1\!(\partial_s A_u-\partial_u A_s)\,ds\,du.
  • Sign sanity: flip B\mathcal B\Rightarrow both sides change sign.

This identity is the computational backbone for PBHL’s Abelian recovery and for unit tests on synthetic belts.


6.3 Surface Gauss on belts (2D divergence theorem)

Let J\mathbf J be a tangential face field on B\mathcal B (e.g., purpose-current density projected to the belt). Define the surface divergence  ⁣s ⁣J\nabla_{\!s}\!\cdot\mathbf J (intrinsic to B\mathcal B). Then

  B ⁣( ⁣s ⁣J)dS  =  B ⁣Jνsdl  =  Γ+ ⁣Jνsdl    Γ ⁣Jνsdl  \boxed{\; \iint_{\mathcal B}\!(\nabla_{\!s}\!\cdot\mathbf J)\,dS \;=\; \oint_{\partial\mathcal B}\!\mathbf J\cdot \boldsymbol{\nu}_s\,dl \;=\; \int_{\Gamma_+}\!\mathbf J\cdot \boldsymbol{\nu}_s\,dl \;-\; \int_{\Gamma_-}\!\mathbf J\cdot \boldsymbol{\nu}_s\,dl \;}

where νs\boldsymbol{\nu}_s is the co-normal: the unit vector in the tangent plane orthogonal to the boundary tangent, chosen to point outward of B\mathcal B. This is the belt analogue of Gauss: it relates face accumulation to edge flux imbalance (outer minus inner).

Coordinate form. With metric gg and J=JsXs+JuXu\mathbf J=J^s\mathbf X_s+J^u\mathbf X_u,

 ⁣s ⁣J=1detg[s ⁣(detgJs)+u ⁣(detgJu)].\nabla_{\!s}\!\cdot\mathbf J =\frac{1}{\sqrt{\det g}}\Big[\partial_s\!\big(\sqrt{\det g}\,J^s\big) +\partial_u\!\big(\sqrt{\det g}\,J^u\big)\Big].

On u=constu=\text{const} edges, dl=Xsdsdl=\|\mathbf X_s\|\,ds and νs=±XuXu\boldsymbol{\nu}_s=\pm\frac{\mathbf X_u}{\|\mathbf X_u\|} (sign per outward rule).


6.4 Worked examples (analytic)

(A) Constant 2-form.
Take A=BudsA= B\,u\,ds on [0,1]2[0,1]^2. Then F=BdudsF=B\,du\wedge ds.
Γ+ ⁣AΓ ⁣A=B0=B\oint_{\Gamma_+}\!A-\oint_{\Gamma_-}\!A= B-0=B, and B ⁣F=B\iint_{\mathcal B}\!F = B.

(B) Surface Gauss on a spherical belt.
Let B\mathcal B be a latitude belt on a sphere of radius RR between colatitudes θ\theta_- and θ+\theta_+, parameterized by (s,u)=(φ,θ)(s,u)=(\varphi,\theta). For a tangential field J=Jφeφ\mathbf J=J_\varphi\,\mathbf e_\varphi (zonal flow),

B ⁣( ⁣s ⁣J)dS=R ⁣θθ+ ⁣ ⁣02π ⁣1sinθφ(sinθJφ)dφdθ=Γ+ ⁣JνsdlΓ ⁣Jνsdl.\iint_{\mathcal B}\!(\nabla_{\!s}\!\cdot\mathbf J)\,dS = R\!\int_{\theta_-}^{\theta_+}\!\!\int_{0}^{2\pi}\!\frac{1}{\sin\theta}\,\partial_\varphi(\sin\theta\,J_\varphi)\,d\varphi\,d\theta = \int_{\Gamma_+}\!\mathbf J\cdot \boldsymbol{\nu}_s\,dl - \int_{\Gamma_-}\!\mathbf J\cdot \boldsymbol{\nu}_s\,dl.

(Here νs=±eθ\boldsymbol{\nu}_s=\pm \mathbf e_\theta; signs follow outer-minus-inner.)


6.5 Numerical Stokes on synthetic fields (see App C)

To validate implementations:

  1. Choose a belt map X(s,u)\mathbf X(s,u) (planar rectangle, warped ribbon, spherical belt).

  2. Pick a synthetic 1-form AA (e.g., polynomials in s,us,u) and compute ground-truth F=dAF=dA.

  3. Discretize [0,1]2[0,1]^2 into an annular mesh (indices i=0..Nsi=0..N_s, j=0..Nuj=0..N_u).

  4. Face integral: sum FF over cells with Simpson/GL quadrature and Jacobians.

  5. Edge integrals: line-integrate AA along u=1u=1 and u=0u=0 with consistent parametrization.

  6. Assert (edge gap)(face flux)ε|(\text{edge gap})-(\text{face flux})|\le \varepsilon (tolerance scales with mesh, field smoothness).

  7. Sensitivity: dilate the belt width, perturb sampling, check width-scaling bound (Part I.5).


6.6 Procedures — mesh constructors & Jacobians

Parametric annulus constructor.

function build_annulus_mesh(upper: Edge, lower: Edge, Ns: int, Nu: int,
                            interp: 'linear'|'spline' = 'spline'):
  # 1) Reparameterize both edges by arc-length s in [0,1]
  # 2) For each s_i, generate a radial path u ↦ X(s_i,u) that joins lower→upper
  # 3) Emit node grid {X_{i,j}} with i∈[0..Ns], j∈[0..Nu]
  # 4) For each cell (i,j), cache Jacobians:
  #    J_{i,j} = ||X_s × X_u||  or sqrt(det g)
  # 5) Record boundary orientation (outer-minus-inner)

Spherical belt helper.

function build_spherical_belt(R, theta_minus, theta_plus, Ns, Nu):
  # X(s,u) = spherical_to_xyz(R, theta(u), phi(s))
  # theta(u) = (1-u)*theta_minus + u*theta_plus
  # phi(s)   = 2π s

Numeric Stokes/Gauss helpers.

function integrate_face(F_func, mesh) -> float
function integrate_edge(A_func, edge_samples, orientation) -> float
function surface_divergence(J_field, mesh_metric) -> array  # for Gauss checks

All constructors return a Mesh object with nodes, cells, metric/Jacobians, boundary index sets {u=0},{u=1}\{u=0\},\{u=1\}, and orientation flags. (Full signatures in Ch31 and App C.1.)


6.7 Figures (described)

  • Annulus orientation. A rectangle [0,1]2[0,1]^2 with arrows: boundary walk keeps the interior on the left; labels “u=1:Γ+u=1:\Gamma_+ (outer), u=0:Γu=0:\Gamma_- (inner)”.

  • Spherical belt. A sphere showing two parallels (inner/outer) and co-normal directions; edge flux arrows demonstrate “outer minus inner”.


6.8 Checks — numeric Stokes on synthetic fields (App C)

  • C-S1 (planar ribbon): polynomial AA, grid refine Ns,Nu ⁣N_s,N_u\!\uparrow → error  ⁣\!\downarrow at expected order.

  • C-S2 (warped ribbon): non-uniform Jacobians; validate sign via orientation flip.

  • C-S3 (spherical belt): match surface-metric Gauss result within tolerance.

  • C-S4 (thin-belt limit): shrink width; confirm edge-gap \approx twist-only (when F0F\to0).


6.9 Artifacts — mesh constructor signatures (Ch31, App C.1)

// TypeScript-style
type AnnulusMesh = {
  nodes: Float64Array,   // [Nnodes × dim]
  cells: Uint32Array,    // quad indices
  jac: Float64Array,     // cell Jacobians (||X_s × X_u|| or sqrt(det g))
  sGrid: Float64Array,   // s coordinates per node
  uGrid: Float64Array,   // u coordinates per node
  boundary: { upper: number[], lower: number[] }, // index lists
  orientation: 'outer-minus-inner',
  meta?: Record<string, any>
};

declare function buildAnnulusMesh(
  upper: Edge, lower: Edge, Ns: number, Nu: number,
  opts?: { interp?: 'linear'|'spline', smoothing?: number }
): AnnulusMesh;

declare function stokesTwoBoundary(
  mesh: AnnulusMesh, A: (s:number,u:number)=>[number,number],
  quad?: 'simpson'|'gauss-legendre'
): { edge_gap: number, face_flux: number, error: number };

These APIs, plus the test pack in App C, give you a ready path to verify orientation, Jacobians, and the two-boundary theorems before plugging PBHL into estimators and ledgers.

 

 

7. Surface Ordering & Holonomy

Goals — non-Abelian mechanics on belts

When Purpose is multi-component (e.g., U(k)U(k) fiber), curvature values at different face points do not commute. A single line integral cannot capture the belt’s interior. We therefore define a surface-ordered exponential for the annulus and a practical dual-tree transport to make it computable and gauge-robust.


7.1 Surface-ordered exponential on an annulus

Let B\mathcal B be the belt, B=Γ+(Γ)\partial\mathcal B=\Gamma_+\sqcup(-\Gamma_-), and pick a basepoint bBb\in\mathcal B.
For each point pBp\in\mathcal B, choose a radial Wilson line W(bp)W(b\to p) (parallel transport by AΠ\mathcal A_\Pi). Define the conjugated curvature

F~Π(p)  =  W(bp)1FΠ(p)W(bp).\widetilde{\mathcal F}_\Pi(p)\;=\;W(b\to p)^{-1}\,\mathcal F_\Pi(p)\,W(b\to p).

The framed belt propagator is

UB  =  Sexp ⁣( ⁣BF~ΠdS),\mathcal U_{\mathcal B} \;=\; \mathcal S\exp\!\Big(\!\iint_{\mathcal B}\widetilde{\mathcal F}_\Pi\,dS\Big),

where S\mathcal S enforces a surface order (an ordering over the face that generalizes path ordering).

PBHL in matrix form (suppressing twist for now) reads

HolΠ(Γ+)  HolΠ(Γ)1  =  UB.\operatorname{Hol}_\Pi(\Gamma_+)\;\operatorname{Hol}_\Pi(\Gamma_-)^{-1} \;=\;\mathcal U_{\mathcal B}.

Taking class functions (trace, characters, argdet\arg\det) gives gauge/basepoint-robust scalars.


7.2 Dual-tree transport

Computing UB\mathcal U_{\mathcal B} and edge holonomies consistently requires two coupled transports:

  1. Face tree: a spanning tree TfaceT_{\text{face}} of mesh cells radiating from bb; gives W(bp)W(b\to p) to every quadrature point pp.

  2. Edge trees: two path trees along Γ±\Gamma_\pm from bb to each edge sample; give W(bq)W(b\to q) for points qΓ±q\in\Gamma_\pm.

Why dual trees?

  • Keep gauge covariance explicit (all face contributions are compared in the same fiber at bb);

  • Make basepoint changes a conjugation (class functions cancel it);

  • Enable local updates (refine a ring or resequence cells without recomputing global transports).


7.3 Face ordering strategies (practical S\mathcal S)

Because [F~Π(p1),F~Π(p2)]0[\widetilde{\mathcal F}_\Pi(p_1),\widetilde{\mathcal F}_\Pi(p_2)]\neq 0, the discretized order matters at finite resolution. Three robust choices:

  • Radial rings (fan ordering) — Partition B\mathcal B into rings u[uj,uj+1]u\in[u_j,u_{j+1}]. Order inner → outer rings; within each ring sweep ss (e.g., left→right).
    Pros: matches intuition for annuli; stable under ring refinement.
    Error: O([F,F]ΔuΔs)\mathcal O(\|[\mathcal F,\mathcal F]\|\,\Delta u\,\Delta s).

  • Stripe (u-first) ordering — Sweep stripes of constant uu across ss, then advance uu.
    Pros: easy on rectangular meshes; amenable to SIMD.
    Note: use the same rule for Γ±\Gamma_\pm path trees to keep conjugacy small.

  • BFS/tree ordering — Do a breadth-first traversal of TfaceT_{\text{face}}.
    Pros: minimizes transport path length variance; good on highly warped belts.

Refinement rule. Any ordering that refines to the same limit and preserves ring monotonicity yields identical class-function scalars in the mesh-refined limit.


7.4 Magnus vs BCH: two log-space tools

Magnus expansion (surface).
Work in the Lie algebra via UB=expΩ\mathcal U_{\mathcal B}=\exp\Omega. The first two terms suffice for high-quality numerics:

Ω1=BF~Π(p)dS,Ω2=12 ⁣ ⁣pq[F~Π(p),F~Π(q)]dSpdSq,\begin{aligned} \Omega_1 &= \iint_{\mathcal B}\widetilde{\mathcal F}_\Pi(p)\,dS,\\ \Omega_2 &= \tfrac12 \iint\!\!\iint_{p\succ q}\,[\widetilde{\mathcal F}_\Pi(p),\widetilde{\mathcal F}_\Pi(q)]\,dS_p\,dS_q, \end{aligned}

where pqp\succ q implements your surface order. Keep Ω=Ω1+Ω2\Omega=\Omega_1+\Omega_2 and set UBexp(Ω)\mathcal U_{\mathcal B}\approx \exp(\Omega).

BCH (edges & gaps).
If you already have edge holonomies H±=HolΠ(Γ±)=expA±H_\pm=\operatorname{Hol}_\Pi(\Gamma_\pm)=\exp A_\pm, then

log ⁣(H+H1)  =  A+A+12[A+,A]+\log\!\big(H_+H_-^{-1}\big) \;=\; A_+ - A_- + \tfrac12[A_+, -A_-] + \cdots

Useful for sanity checks and for reconciling edge-only calculations with the face Magnus result (they agree as mesh refines). In production, prefer face-first with Magnus Ω2\Omega_2.


7.5 Procedures — invariant engine (high-level)

  1. Build mesh & dual trees

    • mesh = buildAnnulusMesh(Γ+, Γ−, Ns, Nu)

    • T_face from basepoint bb to all cells; T_edge^± along Γ±\Gamma_\pm.

  2. Compute transports

    • For each quadrature point pp: Wp=W(bp;Tface)W_p = W(b\to p; T_{\text{face}}).

    • For each edge sample qq: Wq±=W(bq;Tedge±)W^\pm_q = W(b\to q; T_{\text{edge}}^\pm).

  3. Assemble Ω\Omega (Magnus-Ω1+Ω2\Omega_1+\Omega_2)

    • Ω1cpcwpWp1FΠ(p)Wp\Omega_1 \leftarrow \sum_c \sum_{p\in c} w_p \, W_p^{-1}\mathcal F_\Pi(p)W_p.

    • Ω212pqwpwq[Wp1FΠ(p)Wp,  Wq1FΠ(q)Wq]\Omega_2 \leftarrow \tfrac12 \sum_{p\succ q} w_p w_q \,[W_p^{-1}\mathcal F_\Pi(p)W_p,\; W_q^{-1}\mathcal F_\Pi(q)W_q].

    • U_face = expm(Ω1 + Ω2).

  4. Edge holonomies (for diagnostics)

    • H±qΓ±exp ⁣(qq ⁣Wq1AΠWq)H_\pm \leftarrow \prod_{q\in \Gamma_\pm}^{\curvearrowright} \exp\!\big(\int_{q}^{q'} \! W_q^{-1}\mathcal A_\Pi W_q\big).

    • Check log(H+H1)log(Uface)ε\| \log(H_+ H_-^{-1}) - \log(U_{\text{face}})\| \le \varepsilon.

  5. Twist & PBHL scalar

    • Estimate Tw\mathrm{Tw} (Chapter 4).

    • PBHL matrix: Ubelt=UfaceeiαTwU_{\text{belt}} = U_{\text{face}}\cdot e^{i\alpha\,\mathrm{Tw}}.

    • Scalar invariant: ϕgap=1kargdet(Ubelt)\phi_{\text{gap}} = \tfrac1k \arg\det(U_{\text{belt}}).

  6. Return diagnostics

    • Basepoint conjugacy residuals, ordering sensitivity (shuffle within rings), mesh-refinement curve, and confidence bands.

(Full pseudocode listing is provided in Ch.32.)


7.6 Checks — ordering & basepoint benchmarks (see Ch.43)

  • Basepoint invariance. Move bb around a small loop; recompute. Class-function scalars (argdet\arg\det, characters) vary <ε<\varepsilon.

  • Ordering robustness. Fix mesh; permute within-ring order; scalars remain within tolerance; commutator term Ω2\|\Omega_2\| predicts sensitivity.

  • Refinement limit. Increase (Ns,Nu)(N_s,N_u); face-Magnus and edge-BCH logs converge; residual decays at expected order.

  • Gluing consistency. Split the belt into two rings, compute UB1\mathcal U_{\mathcal B_1} and UB2\mathcal U_{\mathcal B_2}; verify UB2UB1\mathcal U_{\mathcal B_2}\mathcal U_{\mathcal B_1} matches whole-belt result up to conjugacy.


7.7 Artifacts — invariant engine pseudocode (pointer)

  • Ch.32 provides a ready-to-adapt engine with:

    • buildDualTrees, transportToPoint, assembleMagnusΩ, edgeHolonomy,

    • pbhlScalar (class-function reductions), and

    • test harnesses for basepoint/order/refinement.

Use the Magnus-Ω2\Omega_2 path by default; fall back to product-of-exponentials when runtime or memory is constrained, and log the ordering you used for reproducibility.

 

8. Discrete Belts: Mesh · Quadrature · Errors

Goals — numerics that actually converge

We turn the belt calculus into finite computations and give an error model you can budget, monitor, and drive to zero by refinement. Targets: stable PBHL scalars (ϕgap,ϕflux,Tw\phi_{\text{gap}},\phi_{\text{flux}},\mathrm{Tw}) with reproducible tolerance.


8.1 Error model (face + edges + twist)

Let hh be the representative mesh size (max cell diameter in (s,u)(s,u)); ww the belt width (in state units); κ\kappa a curvature bound of the embedding; and F\nabla_\perp\mathcal F the variation of FΠ\mathcal F_\Pi normal to the belt midline. For class-function scalars, a practical envelope is

  εPBHL    C1hpquadrature/mesh  +  C2(κw)2geometry (warping)  +  C3FΠw2field shear across width  +  C4Ω2non-Abelian ordering  +  C5εTwtwist estimator  \boxed{\; \varepsilon_{\text{PBHL}} \;\lesssim\; \underbrace{C_1\,h^{p}}_{\text{quadrature/mesh}} \;+\; \underbrace{C_2\,(\kappa\,w)^2}_{\text{geometry (warping)}} \;+\; \underbrace{C_3\,\|\nabla_\perp \mathcal F_\Pi\|\,w^{2}}_{\text{field shear across width}} \;+\; \underbrace{C_4\,\|\Omega_2\|}_{\text{non-Abelian ordering}} \;+\; \underbrace{C_5\,\varepsilon_{\mathrm{Tw}}}_{\text{twist estimator}} \;}
  • pp is the formal order of your area quadrature (e.g., Simpson p=4p=4, Gauss–Legendre p=2qp=2q for qq-point rules).

  • (κw)2(\kappa w)^2 bounds embedding distortion when interpolating radial paths.

  • FΠw2\|\nabla_\perp \mathcal F_\Pi\|\,w^{2} captures field inhomogeneity across the belt (thin-belt makes this small).

  • Ω2\|\Omega_2\| is the Magnus commutator norm (ordering error proxy); drive down via ring refinement.

  • εTw\varepsilon_{\mathrm{Tw}} is the twist estimation error (Ch. 4); include policy-step quantization if that’s your only twist source.

Budgeting rule: track each term; stop refining when further mesh reductions no longer move εPBHL\varepsilon_{\text{PBHL}} because width- or non-Abelian terms dominate.


8.2 Structured mesh defaults

Use an annular tensor grid with NsN_s samples around and NuN_u radials across:

  • Default aspect: Ns:Nu4:1N_s : N_u \approx 4:1 (curvature is usually along ss).

  • Ring monotonicity: enforce increasing uu rings for robust surface ordering.

  • Spline interpolation: prefer C1C^1 splines for radial paths X(s,u)X(s,u); fall back to linear on noisy edges.

Recommended starting table (App C)

Belt class NsN_s NuN_u Quad Target ε\varepsilon
Planar ribbon, smooth A,FA,F 128 32 Simpson 10610^{-6}
Warped belt, moderate κ\kappa 192 48 GL-4 10510^{-5}
Non-Abelian, Ω2\|\Omega_2\| medium 256 64 GL-6 + Ω2\Omega_2 10410^{-4}

8.3 Adaptive refinement (where it matters)

Refine rings and sectors where indicators spike:

  • Field indicator: cell variance of W1FΠWW^{-1}\mathcal F_\Pi W.

  • Ordering indicator: local commutator norm [F~(p),F~(q)]\|[\widetilde{\mathcal F}(p),\widetilde{\mathcal F}(q)]\| within a ring.

  • Geometry indicator: second finite difference of radial paths (large when κ\kappa is high).

  • Edge indicator: curvature of Γ±\Gamma_\pm or jitter in edge holonomies.

Policy: split ring jj if any indicator exceeds its threshold; cap NuN_u per refinement round to protect cache locality.


8.4 Quadrature choice & stability

  • Edges: composite Simpson on ss (odd number of panels), or GL-q if AΠA_\Pi is rough. Always log the edge parameterization.

  • Face:

    • Smooth Abelian: Simpson × Simpson over (s,u)(s,u).

    • Non-Abelian: Gauss–Legendre 2×22\times2 or 3×33\times3 per cell with Magnus Ω2\Omega_2 (Section 7).

  • Conditioning: rescale local charts so per-cell area 1\approx 1; this improves exp/log stability in u(k)\mathfrak{u}(k).


8.5 Error vs DOF (what to expect)

Let DOFksNs+kuNu+kfNsNu\text{DOF}\approx k_s N_s + k_u N_u + k_f N_sN_u be total work units (transport + quadrature). Typical regimes:

  • Quadrature-limited (smooth, Abelian): log-log slope p/2\approx -p/2 vs DOF.

  • Ordering-limited (non-Abelian): plateau unless you (i) increase rings, (ii) include Ω2\Omega_2; after that, slope recovers.

  • Width-limited: refining grid no longer helps; shrink ww or accept the geometric bound.

(Figure: plot ϕgapϕ|\phi_{\text{gap}}-\phi^\star| vs DOF with markers for regime changes.)


8.6 Practical procedures

  1. Thin-belt first. If you control preprocessing, shrink ww (reduces C2,C3C_2,C_3).

  2. Pick a quadrature. Start with Simpson (Abelian) or GL-6 + Ω2\Omega_2 (non-Abelian).

  3. Run three meshes. (Ns,Nu)(N_s,N_u), 2×2\times, 4×4\times; confirm asymptotic rate pp.

  4. Order audit. Compute with two orderings (rings vs stripes); difference upper-bounds ordering error.

  5. Twist audit. Swap twist estimators (midpoint vs quaternion); take max as εTw\varepsilon_{\mathrm{Tw}}.

  6. Width audit. Dilate wλww\to\lambda w for λ{0.5,1,2}\lambda\in\{0.5,1,2\}; fit the (κw)2(\kappa w)^2 term.

  7. Log the budget. Store {h,p,κw,F,Ω2,εTw}\{h,p,\kappa w,\|\nabla_\perp\mathcal F\|, \|\Omega_2\|,\varepsilon_{\mathrm{Tw}}\} alongside invariants.


8.7 Config templates (see App C)

belt_numerics:
  mesh:
    Ns: 256
    Nu: 64
    interp: spline       # 'linear'|'spline'
    thin_belt: true
    width_scale: 1.0
  quadrature:
    edges: simpson       # 'simpson'|'gl2'|'gl4'|'gl6'
    face: gl6
    magnus:
      use_Omega2: true
      comm_threshold: 1e-3
  adaptivity:
    enable: true
    indicators:
      field_var: 3.0e-4
      comm_norm: 1.0e-3
      geom_bend: 2.0e-3
    max_refine_levels: 3
  twist:
    estimator: quaternion # 'midpoint'|'quaternion'|'spline'
    policy_units: turns   # 1 turn = 2π
  tolerances:
    phi_gap_abs: 5.0e-5
    conjugacy_resid: 1.0e-6
    width_slope_check: true

8.8 Artifacts (where to find them)

  • App C tables: recommended Ns,NuN_s,N_u, quadrature orders, and expected rates for common belt shapes.

  • Config packs: ready-to-use YAMLs for Abelian-smooth, Non-Abelian-moderate, Warped-thin scenarios.

  • Utilities: scripts to compute hh, estimate κ\kappa, and sample F\nabla_\perp\mathcal F from tiles.

Outcome: with these defaults, the PBHL scalars converge predictably; if they don’t, your error budget will tell you which knob to turn (rings, width, or Ω2\Omega_2).

 

9. Invariance & 4π Periodicity

Goals — make the scalars robust

Our belt scalars must be insensitive to representation choices (gauge, basepoint, parametrization, mesh ordering) and stable under framing rotations. This section states the invariances, clarifies 2π vs 4π behavior, and outlines the test harness you will run in Ch.43.


9.1 Class-function invariants (what we measure)

Let

ΔH    HolΠ(Γ+)HolΠ(Γ)1  =  UBeiαTw,UB=Sexp ⁣( ⁣B ⁣W1FΠW).\Delta H \;\equiv\; \operatorname{Hol}_\Pi(\Gamma_+)\,\operatorname{Hol}_\Pi(\Gamma_-)^{-1} \;=\; \mathcal U_{\mathcal B}\cdot e^{\,i\,\alpha\,\mathrm{Tw}}, \qquad \mathcal U_{\mathcal B}=\mathcal S\exp\!\Big(\!\iint_{\mathcal B}\!W^{-1}\mathcal F_\Pi W\Big).

We report class-function scalars, i.e. functions ff with f(G1XG)=f(X)f(G^{-1}XG)=f(X):

  • Gap phase: ϕgap=1kargdet(ΔH)\displaystyle \phi_{\text{gap}}=\frac{1}{k}\arg\det(\Delta H) (projective U(k)U(k)).

  • Flux phase: ϕflux=1kargdet(UB)\displaystyle \phi_{\text{flux}}=\frac{1}{k}\arg\det(\mathcal U_{\mathcal B}).

  • Characters (optional): χm=1klogTr(ΔHm)\chi_m=\tfrac1k\Im\log\operatorname{Tr}(\Delta H^m) for harmonics mm.

These eliminate basepoint and ordering conjugacy by construction and are parameterization-independent.


9.2 Invariance statements (and what would break them)

Gauge invariance.
AΠAΠ+dχ\mathcal A_\Pi\mapsto \mathcal A_\Pi+d\chi leaves FΠ\mathcal F_\Pi invariant. ΔH\Delta H changes by conjugation and gauge periods; class functions cancel conjugation; integer periods are absorbed by calibration (Ch.2).

Basepoint invariance.
Moving the basepoint bb changes WW and UB\mathcal U_{\mathcal B} by conjugation; f(ΔH)f(\Delta H) unchanged.
Failure mode: inconsistent edge orderings or mismatched dual trees (Ch.7) → detectable as non-zero conjugacy residual.

Ordering invariance (refinement limit).
Different surface orderings that respect ring-monotonicity converge to the same f(ΔH)f(\Delta H) as the mesh refines.
Finite-mesh drift is controlled by Ω2\|\Omega_2\| (Ch.7–8); include it in the error budget.

Parametrization invariance.
Reparameterizing Γ±\Gamma_\pm or B\mathcal B leaves integrals invariant (edges re-weight arc length; face re-weights Jacobian).

Gluing invariance.
Gluing along a seam composes matrices up to conjugation; class-function scalars add (Ch.5).

Orientation flip.
BB\mathcal B\mapsto\mathcal B^\dagger flips signs: ϕfluxϕflux\phi_{\text{flux}}\mapsto -\phi_{\text{flux}}, TwTw\mathrm{Tw}\mapsto -\mathrm{Tw}, ϕgapϕgap\phi_{\text{gap}}\mapsto -\phi_{\text{gap}}.
Sanity test: all three flip together.


9.3 2π vs 4π framing periodicity

Twist counting.
We count Tw12Z\mathrm{Tw}\in\tfrac12\mathbb Z (half-turns). A 2π frame roll adds +1+1 to Tw\mathrm{Tw}; a 4π roll adds +2+2.

Operational default (vectorial mode).
Choose α2πZ\alpha\in 2\pi\mathbb Z. Then

eiαΔTw=1for any integer ΔTw,e^{\,i\,\alpha\,\Delta\mathrm{Tw}}=1\quad\text{for any integer }\Delta\mathrm{Tw},

so and frame rolls leave the scalar phase unchanged. This matches ledger needs (policy re-labels shouldn’t move outputs).

Spinorial option (research mode).
Set απZ2πZ\alpha\in\pi\mathbb Z\setminus 2\pi\mathbb Z. Then a roll flips the sign of non-class scalars, but class-function invariants like argdet\arg\det remain 2π-invariant (determinant kills the sign). A roll is invariant even at matrix level.
Use case: diagnosing hidden “spinor-like” channels in multi-purpose stacks.

What we certify here.
For all reported scalars in PFBT (class-functions), we require 4π periodicity by test, and 2π invariance when α=2πn\alpha=2\pi n.


9.4 Test harness design (pointer to Ch.43)

Each test returns a pass/fail plus a numeric residual; thresholds scale with the error model of Ch.8.

T-Gauge. Random gauge bump χ\chi on tiles → Δϕgapτgauge|\Delta \phi_{\text{gap}}|\le \tau_{\text{gauge}}.
T-Basepoint. Move bb along a small loop → conjugacy residual τb\le \tau_b.
T-Ordering. Recompute with ring vs stripe ordering → Δϕgapτord|\Delta \phi_{\text{gap}}|\le \tau_{\text{ord}}; record Ω2\|\Omega_2\|.
T-Refine. Double (Ns,Nu)(N_s,N_u) → observed rate matches configured pp within band.
T-Gluing. Split belt, compute and glue → additive within τ#\tau_{\#}.
T-Flip. Reverse orientation → all three signs flip; relative error τflip\le \tau_{\text{flip}}.
T-2π. Apply 2π frame roll (add ΔTw=+1\Delta\mathrm{Tw}=+1) → scalar invariants unchanged: τ2π\le \tau_{2\pi}.
T-4π. Apply 4π roll (two successive 2π) → unchanged within τ4π\le \tau_{4\pi}.
T-Width. Vary width w{12,1,2}w\in\{\tfrac12,1,2\} → fit residual to C2(κw)2+C3Fw2C_2(\kappa w)^2+C_3\|\nabla_\perp\mathcal F\|w^2 (Ch.8); report R2R^2.

Threshold guidance (defaults)
Set from Ch.8 budget εPBHL\varepsilon_{\text{PBHL}}:

  • τb=τord=τ#=0.2εPBHL\tau_b=\tau_{\text{ord}}=\tau_{\#}=0.2\,\varepsilon_{\text{PBHL}}

  • \tau_{2\pi}=\tau_{4\pi}}=0.1\,\varepsilon_{\text{PBHL}}

  • τflip=0.1εPBHL\tau_{\text{flip}}=0.1\,\varepsilon_{\text{PBHL}} (after sign correction)

  • Refinement acceptance: observed slope within ±0.3\pm 0.3 of target.

All tests log mesh DOF, Ω2\|\Omega_2\|, width ww, κ\kappa estimate, and twist estimator choice.


9.5 Artifacts — test spec & thresholds (see Ch.43)

Example config you can drop into the harness:

invariance_tests:
  gauge:
    enable: true
    amplitude: 0.02
    tau: 0.2 * eps_pbhl
  basepoint:
    enable: true
    loop_radius: 0.05
    tau: 0.2 * eps_pbhl
  ordering:
    enable: true
    strategies: ["rings","stripes"]
    tau: 0.2 * eps_pbhl
  refinement:
    enable: true
    meshes: [[128,32],[256,64],[512,128]]
    target_order_p: 4
    slope_tolerance: 0.3
  gluing:
    enable: true
    split: "mid_ring"
    tau: 0.2 * eps_pbhl
  orientation_flip:
    enable: true
    tau: 0.1 * eps_pbhl
  framing_2pi:
    enable: true
    delta_tw: 1    # one full 2π roll
    alpha: 6.283185307179586   # 2π
    tau: 0.1 * eps_pbhl
  framing_4pi:
    enable: true
    delta_tw: 2    # two full rolls
    alpha: 6.283185307179586
    tau: 0.1 * eps_pbhl
logging:
  record:
    - DOF
    - Omega2_norm
    - width
    - kappa_est
    - twist_estimator

Outcome. After Part II’s harness passes, your PBHL scalars are representation-robust and framing-periodic. This certifies them for use in the controllers (Part V) and in the macro work–entropy ledger (Part III, VII, IX).

 

 


 

 

 © 2025 Danny Yeung. All rights reserved. 版权所有 不得转载

 

Disclaimer

This book is the product of a collaboration between the author and OpenAI's GPT-5 language model. While every effort has been made to ensure accuracy, clarity, and insight, the content is generated with the assistance of artificial intelligence and may contain factual, interpretive, or mathematical errors. Readers are encouraged to approach the ideas with critical thinking and to consult primary scientific literature where appropriate.

This work is speculative, interdisciplinary, and exploratory in nature. It bridges metaphysics, physics, and organizational theory to propose a novel conceptual framework—not a definitive scientific theory. As such, it invites dialogue, challenge, and refinement.


I am merely a midwife of knowledge.

 

 

No comments:

Post a Comment