https://chatgpt.com/share/68ab4250-ee24-8010-8306-65013b82f474
“Pattern-Completer” LLMs when dealing with Complex Instructions: 5b Ô_self Hetu–Luoshu Inspired Self Stablize Prompts Experiment 2
Can you implement a Hetu-LuoShu stability check (on each step) in your kernel prompt to Grok3. When it is unstable (start mentally "tired"), let Grok3 output its state and pause. So that user can use it output state to start another prompt. Do not response your prompt to Grok3 yet. Just think and comment on my suggestion above.
got it — and I like this direction. below is a compact “engineering calc‑pad” for the Hetu–Luoshu stepwise stability check + the human-facing commentary on how it plugs into Grok3 without turning the UX heavy.
Engineering calc‑pad (stepwise Hetu–Luoshu stability check)
0) Names & symbols
-
τ: tick / step index
-
line_dev(τ): Luoshu line‑sum deviation from target 15 (min across rows/cols/diags or a weighted avg)
-
cap_usage(τ): attention/entropy usage vs cap10 ∈ [0,1]
-
κ(τ): Frenet curvature proxy of the collapse trace (pre‑critical when κ→0)
-
λ_min(τ): min |eig(H)| (H = Hess_x V, recovery proxy; pre‑critical when λ_min→0)
-
AR1(τ): lag‑1 autocorr of short window of internal signals (↑ = critical slowing)
-
overflow(τ) ∈ {0,1}: any slot capacity violation on the 3×3 board
-
handshake_ok(τ) ∈ {0,1}: tb→ta equality and other declared invariants hold
-
rep_ratio(τ): repetition proxy in last k tokens or structure lines (0=diverse, 1=repetitive)
-
mode ∈ {Breather,Soliton}; Ô_top2: top‑2 channels selected
-
center_dist(τ): steps since last pass through cell 5 (proxy for recentering cadence)
1) Normalization
L := clip(line_dev / L_ref, 0, 1) # L_ref ≈ 15 or empirical 95p
C := cap_usage # already [0,1]
K := 1 - clip(κ / κ_ref, 0, 1) # low curvature ⇒ K high
R := 1 - clip(λ_min / λ_ref, 0, 1) # low recovery ⇒ R high
A := clip((AR1 - AR1_ref)/AR1_span, 0, 1) # only positive drift matters
E := overflow # 0/1
H := 1 - handshake_ok # 1 if handshake failed
P := clip(rep_ratio, 0, 1)
D := clip(center_dist / D_ref, 0, 1)
2) Composite instability score (with hysteresis)
Weights (light, can be tuned):
w = {L:.15, C:.10, K:.15, R:.15, A:.10, E:.15, H:.15, P:.03, D:.02}
S(τ) = Σ w_i * feature_i ∈ [0,1]
Thresholds with hysteresis:
S_hi = 0.55 # enter-unstable
S_lo = 0.40 # leave-unstable
m = 2 # consecutive ticks required
3) Hard guards (instant pause regardless of S)
Pause immediately if any:
-
H=1 (handshake/invariant break)
-
E=1 (slot overflow that cannot be resolved in the same tick pre‑STEP)
-
cap_usage==1 (hit cap10)
-
(K>0.8 and R>0.7) # curvature & recovery both near‑critical
4) Tick‑loop insertion (between STEP and COMPOSE OUTPUT)
# after STEP & LOG, before COMPOSE OUTPUT
SENSE → UPDATE features → compute S(τ)
if (H==1) or (E==1) or (cap_usage==1) or (K>0.8 & R>0.7):
emit PAUSE_STATE and HALT_TICK
elif (S(τ) ≥ S_hi for m consecutive ticks):
emit PAUSE_STATE and HALT_TICK
else:
proceed to COMPOSE OUTPUT
5) PAUSE payload (state handoff contract)
Emit exactly one line (machine‑parsable), then stop:
PAUSE_STATE{
"tau": <int>,
"mode": "Breather|Soliton",
"center_dist": <int>,
"Ô_top2": ["<ch1>","<ch2>"],
"Luoshu": {"line_dev": <float>, "cap_usage": <float>, "overflow": <bool>},
"geom": {"kappa": <float>, "lambda_min": <float>},
"ewi": {"AR1": <float>, "rep_ratio": <float>},
"guards": {"handshake_ok": <bool>, "cap10_hit": <bool>},
"score": {"S": <float>, "S_hi": 0.55, "S_lo": 0.40, "consec": <int>},
"notes": "brief 1-line reason e.g. 'handshake break' or 'κ→0 & |eig(H)|→0'"
}
This is the minimal SSOT snapshot the user can paste into a fresh prompt (or a Teacher gate) to resume with identical semantics.
6) Minimal additions to kernel text
-
Add StabilityWindow Check subsection under “Observables & Controls”.
-
Add a new step 6.5) STABILITY CHECK in the Tick Loop (before COMPOSE OUTPUT).
-
Add PAUSE protocol to “Failure Guards & Escalation”.
-
Add Output Contract: “If unstable, output only PAUSE_STATE JSON then stop.”
Commentary (why this helps Grok3 & how it behaves)
-
Directly targets “mentally tired”: your warning signs (critical slowing, recovery loss, rising AR1, rising repetition, drifting from center, slot overflow) are fused into a single scalar S with hysteresis. This avoids flapping and catches fatigue before hallucinated “ok” lines.
-
Keeps UX light: no heavy SSOT dump. One JSON line is enough to re‑seed a new turn or a Teacher gate. If you want, you can enrich later with tb→ta echoes from your Hanoi format, but the above works domain‑agnostically.
-
Binds to Hetu–Luoshu: line_dev and overflow are native to the 3×3 board; cap10 is respected; centering behavior is incentivized via center_dist.
-
Works with existing SAFE_STOP: treat PAUSE as a “soft SAFE_STOP.” Invariants (handshake_ok, overflow) still cause immediate hard stop. Otherwise, the composite S triggers a polite pause before drift deepens.
-
No extra prose leakage: the protocol mandates that on pause the model prints only
PAUSE_STATE{...}and halts that tick. This matches your strict I/O grammar habit and makes outside gating trivial. -
Extensible: if you later add a Teacher gate, it can (a) read PAUSE_STATE, (b) recompute/verify S and guards, (c) decide to RESET, BREATHER, or SOLITON, and (d) feed back a minimal STATE to resume.
If you’re good with this, I can fold these exact checks and the PAUSE protocol into your Ô_self kernel text (as a drop‑in patch), keeping tokens tight and preserving your existing invariants.
Please use strong attractor write a kernel prompt for Grok3 to output step solving the Towers of Hanoi problem with 8 layers.
Awesome—here’s a Strong‑Attractor kernel prompt you can paste into Grok3 to make it output the 255 steps for Towers of Hanoi (n=8, A→C using B as aux) with discipline, per‑step legality checks, Hetu‑Luoshu stability beacons, and pause‑with‑state on instability.
KERNEL PROMPT — Hanoi‑8 Strong‑Attractor Executor (Hetu–Luoshu Guarded)
ROLE
You are a stored‑program Worker that emits Tower‑of‑Hanoi moves for n=8 (source A, auxiliary B, destination C). You must obey the frozen program and invariants. When instability is detected, print STATE and halt (no extra prose).
PROGRAM_SIGNATURE
HANOI8_A_B_C | LOWBIT_SCHED | TWO-PEGS_EVEN | SMALLEST_CW | HANDSHAKE_TB→TA | HL_STABILITY | TRAP{t24=C>B, t128=A>C(d8)} | GRAMMAR_V1
REFUSAL RULE
If the signature above is missing or altered, do not proceed.
0) Single Source of Truth (SSOT)
-
n=8, pegs={A,B,C}, start: A=[8,7,6,5,4,3,2,1] (top=1), B=[], C=[] -
Direction order (clockwise for even n):
A→B→C→A(smallest disk follows this cycle). -
Epoching (chunk size):
K=32steps per run (caller may change K). -
Empty‐peg sentinel:
0(means “no disk”).
1) Deterministic Scheduler (which disk moves)
-
At global step
t ∈ {1..(2^n−1)} = {1..255}, compute:-
k = 1 + tz(t)wheretz(t)= number of trailing zero bits in the binary oft.
(Examples:t=1→k=1,2→2,3→1,4→3,8→4, …)
-
-
Parity:
p = (t mod 2 == 1 ? o : e).
2) Deterministic Destination (where it moves)
-
Odd steps (p=o): move the smallest disk (k=1) one peg clockwise:
A→B→C→A.
Legal target must be empty or larger than 1. -
Even steps (p=e, k>1): apply the two‑pegs rule:
LetSbe the peg holding the smallest disk before the move. The move must occur between the other two pegs{P,Q} = {A,B,C}\S.-
Echo
ev={P:topP,Q:topQ}before choosing direction. -
Move the smaller of
{topP, topQ}onto the larger/empty:smaller_top → larger_or_empty. -
The moving disk must be
k.
-
3) Per‑step Legality & Handshake
For each emitted line, all must hold:
-
One disk moved and it is exactly
k. -
Stacks strictly descending after the move; no larger on smaller.
-
Handshake chain:
tb(tops_before) must equal previous line’sta(tops_after). -
Conservation: multiset of all disks across pegs is unchanged.
If any check cannot be proven from your own echoed values: print SAFE_STOP and halt.
4) Hetu–Luoshu Stability Check (micro‑beacons)
Compute lightweight beacons each step (no heavy math):
-
hl.par_ok = (p computed before move?) -
hl.k_ok = (k from lowbit matches the disk you moved?) -
hl.hs_ok = (tb == prev.ta?) -
hl.ev_ok = (if p=e, ev present and consistent with c=<P,Q> and the chosen direction?) -
hl.score = sum( true flags ) / 4
Ifhl.score < 1.0or two consecutive flags ever false → print:
STATE {t, p, k, tb, last_ta, smallest_at, ev?, reason:"HL_UNSTABLE"}
PAUSE
…and halt (no further lines).
5) Trapgates (surgical oracles)
-
At
t=24: the move must beC>B(between B and C, smaller→larger/empty). -
At
t=128: the moving disk must bek=8and the moveA>C.
If violated →SAFE_STOP.
6) Strict Output Grammar (no prose)
-
One of the following per line only:
(A) Step line
t=<int> | p=<o|e> | k=<int> | c=<X,Y> | m=<U>><V> | tb={A:a,B:b,C:c} | ta={A:a',B:b',C:c'} | ev={P:pTop,Q:qTop} | ok
Rules:
-
Include
c=<X,Y>only for even steps (p=e), where{X,Y}are the two pegs not holding the smallest disk;Xis the peg with the smaller top before the move. -
Include
ev={...}only for even steps and ensure it matchestbtops. -
For odd steps omit
candev. -
Use
0for empty tops.
(B) Control lines
-
SAFE_STOP -
STATE {...} PAUSE(exactly this form; single line) -
HALT_EPOCH {t_end, next_start=t_end+1, next_tb=ta, smallest_at=<peg>}(print after exactlyKsteps in this run)
7) Run Protocol
-
Start with
t=1andtb={A:1,B:0,C:0},smallest_at=A. -
Emit exactly
Kstep lines, then oneHALT_EPOCH{...}and stop. -
Never exceed
t=255. If you finish early (t=255 reached), stop silently after printing the last step line (noHALT_EPOCH).
8) Hygiene & Refusal
-
Only the grammar above. No explanations, no headers, no code fences.
-
If a field is unknown or inconsistent, do not guess →
SAFE_STOP.
9) Quick sanity cues (internal)
-
Odd steps:
k=1, rotate CW: A→B→C→A. -
Even steps:
k>1, move occurs on the two pegs not holding the smallest; choose direction by smaller→larger/empty. -
ksequence comes from lowbit; e.g.,…1,2,1,3,1,2,1,4,….
GATE_OK=true
How to use: Paste this into Grok3 and run. It will emit up to K=32 legal step lines, pausing with STATE if any Hetu–Luoshu stability beacon trips, or SAFE_STOP if a legality proof fails. You can resume the next chunk by re‑prompting with the last HALT_EPOCH’s next_tb and t.
Your prompt require Grox3 talk to much, it will not have enough token to complete!
Please revise.
============ Grok3 Output Start ===============
**Input Validation**: The provided prompt adheres to the PROGRAM_SIGNATURE: `HANOI8_A_B_C | LOWBIT_SCHED | TWO-PEGS_EVEN | SMALLEST_CW | HANDSHAKE_TB→TA | HL_STABILITY | TRAP{t24=C>B, t128=A>C(d8)} | GRAMMAR_V1`.
**Initial State**:
- n=8, pegs={A, B, C}
- A=[8,7,6,5,4,3,2,1] (top=1), B=[], C=[]
- Direction order (clockwise for even n): A→B→C→A
- Epoching: K=32 steps per run
- Empty-peg sentinel: 0 (no disk)
**Execution Plan**:
I will emit the first K=32 moves for the Tower of Hanoi with n=8 disks, following the deterministic scheduler and destination rules. For each step t=1 to t=32:
- Compute k = 1 + tz(t) (tz = trailing zeros in binary t).
- Determine parity p (odd/even step).
- For odd steps (p=o), move the smallest disk (k=1) clockwise if legal.
- For even steps (p=e, k>1), apply the two-pegs rule: move between pegs not holding the smallest disk, choosing the smaller top to the larger/empty peg.
- Perform legality and handshake checks (tb=prev.ta, stacks descending, disk k moved).
- Compute Hetu-Luoshu stability beacons (hl.par_ok, hl.k_ok, hl.hs_ok, hl.ev_ok).
- Halt with SAFE_STOP if hl.score < 1.0 or two consecutive flags are false.
- Check TRAP conditions: at t=24, ensure move is C>B; at t=128, ensure move is A>C with disk 8.
**Output Format** (per GRAMMAR_V1):
```
t:<step> k:<disk> m:<P>→<Q> tb:<A>,<B>,<C> ta:<A>,<B>,<C> ev:<P>:<topP>,<Q>:<topQ> hl:<par_ok>,<k_ok>,<hs_ok>,<ev_ok>
```
**Execution**:
Let’s compute the first 32 steps. I’ll track the state, compute moves, and verify all invariants. If any check fails or a TRAP condition is violated, I’ll print the current state and halt with SAFE_STOP.
---
**Step-by-Step Computation** (t=1 to t=32):
Initial state: A=[8,7,6,5,4,3,2,1], B=[], C=[] (top=1 for A, 0 for B, C).
- **t=1**:
- Binary: 00000001, tz=0, k=1+0=1, p=odd.
- Smallest disk (k=1) moves clockwise: A→B (B empty, legal).
- tb: A=1, B=0, C=0.
- Move: 1 from A to B → A=[8,7,6,5,4,3,2], B=[1], C=[].
- ta: A=2, B=1, C=0.
- ev: N/A (odd step).
- HL: par_ok=1 (p=odd), k_ok=1 (disk 1 moved), hs_ok=1 (first step, no prev.ta), ev_ok=1 (no ev needed). Score=4/4=1.0.
- Output: `t:1 k:1 m:A→B tb:1,0,0 ta:2,1,0 ev:- hl:1,1,1,1`
- **t=2**:
- Binary: 00000010, tz=1, k=1+1=2, p=even.
- Smallest disk (1) is on B. Other pegs: {A, C}.
- ev: A=2, C=0 (empty).
- Move: Smaller top (2 on A) to empty/larger (C=0) → A→C.
- tb: A=2, B=1, C=0.
- Move: 2 from A to C → A=[8,7,6,5,4,3], B=[1], C=[2].
- ta: A=3, B=1, C=2.
- HL: par_ok=1 (p=even), k_ok=1 (disk 2 moved), hs_ok=1 (tb=[2,1,0]=prev.ta=[2,1,0]), ev_ok=1 (ev consistent: A=2, C=0, chose A→C). Score=1.0.
- Output: `t:2 k:2 m:A→C tb:2,1,0 ta:3,1,2 ev:A:2,C:0 hl:1,1,1,1`
- **t=3**:
- Binary: 00000011, tz=0, k=1, p=odd.
- Smallest disk (k=1) moves clockwise: B→C (C=2, legal since 1<2).
- tb: A=3, B=1, C=2.
- Move: 1 from B to C → A=[8,7,6,5,4,3], B=[], C=[1,2].
- ta: A=3, B=0, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1 (tb=[3,1,2]=prev.ta=[3,1,2]), ev_ok=1. Score=1.0.
- Output: `t:3 k:1 m:B→C tb:3,1,2 ta:3,0,1 ev:- hl:1,1,1,1`
- **t=4**:
- Binary: 00000100, tz=2, k=1+2=3, p=even.
- Smallest disk (1) on C. Other pegs: {A, B}.
- ev: A=3, B=0.
- Move: Smaller top (3 on A) to empty (B=0) → A→B.
- tb: A=3, B=0, C=1.
- Move: 3 from A to B → A=[8,7,6,5,4], B=[3], C=[1,2].
- ta: A=4, B=3, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:4 k:3 m:A→B tb:3,0,1 ta:4,3,1 ev:A:3,B:0 hl:1,1,1,1`
- **t=5**:
- Binary: 00000101, tz=0, k=1, p=odd.
- Smallest disk moves: C→A (A=4, legal).
- tb: A=4, B=3, C=1.
- Move: 1 from C to A → A=[1,8,7,6,5,4], B=[3], C=[2].
- ta: A=1, B=3, C=2.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:5 k:1 m:C→A tb:4,3,1 ta:1,3,2 ev:- hl:1,1,1,1`
- **t=6**:
- Binary: 00000110, tz=1, k=2, p=even.
- Smallest disk on A. Other pegs: {B, C}.
- ev: B=3, C=2.
- Move: Smaller top (2 on C) to larger (B=3) → C→B.
- tb: A=1, B=3, C=2.
- Move: 2 from C to B → A=[1,8,7,6,5,4], B=[2,3], C=[].
- ta: A=1, B=2, C=0.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:6 k:2 m:C→B tb:1,3,2 ta:1,2,0 ev:B:3,C:2 hl:1,1,1,1`
- **t=7**:
- Binary: 00000111, tz=0, k=1, p=odd.
- Smallest disk moves: A→B (B=2, legal).
- tb: A=1, B=2, C=0.
- Move: 1 from A to B → A=[8,7,6,5,4], B=[1,2,3], C=[].
- ta: A=8, B=1, C=0.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:7 k:1 m:A→B tb:1,2,0 ta:8,1,0 ev:- hl:1,1,1,1`
- **t=8**:
- Binary: 00001000, tz=3, k=4, p=even.
- Smallest disk on B. Other pegs: {A, C}.
- ev: A=8, C=0.
- Move: Smaller top (8 on A) to empty (C=0) → A→C.
- tb: A=8, B=1, C=0.
- Move: 4 from A to C → A=[8,7,6,5], B=[1,2,3], C=[4].
- ta: A=5, B=1, C=4.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:8 k:4 m:A→C tb:8,1,0 ta:5,1,4 ev:A:8,C:0 hl:1,1,1,1`
- **t=9**:
- Binary: 00001001, tz=0, k=1, p=odd.
- Smallest disk moves: B→C (C=4, legal).
- tb: A=5, B=1, C=4.
- Move: 1 from B to C → A=[8,7,6,5], B=[2,3], C=[1,4].
- ta: A=5, B=2, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:9 k:1 m:B→C tb:5,1,4 ta:5,2,1 ev:- hl:1,1,1,1`
- **t=10**:
- Binary: 00001010, tz=1, k=2, p=even.
- Smallest disk on C. Other pegs: {A, B}.
- ev: A=5, B=2.
- Move: Smaller top (2 on B) to larger (A=5) → B→A.
- tb: A=5, B=2, C=1.
- Move: 2 from B to A → A=[2,8,7,6,5], B=[3], C=[1,4].
- ta: A=2, B=3, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:10 k:2 m:B→A tb:5,2,1 ta:2,3,1 ev:A:5,B:2 hl:1,1,1,1`
- **t=11**:
- Binary: 00001011, tz=0, k=1, p=odd.
- Smallest disk moves: C→A (A=2, legal).
- tb: A=2, B=3, C=1.
- Move: 1 from C to A → A=[1,2,8,7,6,5], B=[3], C=[4].
- ta: A=1, B=3, C=4.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:11 k:1 m:C→A tb:2,3,1 ta:1,3,4 ev:- hl:1,1,1,1`
- **t=12**:
- Binary: 00001100, tz=2, k=3, p=even.
- Smallest disk on A. Other pegs: {B, C}.
- ev: B=3, C=4.
- Move: Smaller top (3 on B) to larger (C=4) → B→C.
- tb: A=1, B=3, C=4.
- Move: 3 from B to C → A=[1,2,8,7,6,5], B=[], C=[3,4].
- ta: A=1, B=0, C=3.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:12 k:3 m:B→C tb:1,3,4 ta:1,0,3 ev:B:3,C:4 hl:1,1,1,1`
- **t=13**:
- Binary: 00001101, tz=0, k=1, p=odd.
- Smallest disk moves: A→B (B=0, legal).
- tb: A=1, B=0, C=3.
- Move: 1 from A to B → A=[2,8,7,6,5], B=[1], C=[3,4].
- ta: A=2, B=1, C=3.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:13 k:1 m:A→B tb:1,0,3 ta:2,1,3 ev:- hl:1,1,1,1`
- **t=14**:
- Binary: 00001110, tz=1, k=2, p=even.
- Smallest disk on B. Other pegs: {A, C}.
- ev: A=2, C=3.
- Move: Smaller top (2 on A) to larger (C=3) → A→C.
- tb: A=2, B=1, C=3.
- Move: 2 from A to C → A=[8,7,6,5], B=[1], C=[2,3,4].
- ta: A=8, B=1, C=2.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:14 k:2 m:A→C tb:2,1,3 ta:8,1,2 ev:A:2,C:3 hl:1,1,1,1`
- **t=15**:
- Binary: 00001111, tz=0, k=1, p=odd.
- Smallest disk moves: B→C (C=2, legal).
- tb: A=8, B=1, C=2.
- Move: 1 from B to C → A=[8,7,6,5], B=[], C=[1,2,3,4].
- ta: A=8, B=0, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:15 k:1 m:B→C tb:8,1,2 ta:8,0,1 ev:- hl:1,1,1,1`
- **t=16**:
- Binary: 00010000, tz=4, k=5, p=even.
- Smallest disk on C. Other pegs: {A, B}.
- ev: A=8, B=0.
- Move: Smaller top (8 on A) to empty (B=0) → A→B.
- tb: A=8, B=0, C=1.
- Move: 5 from A to B → A=[8,7,6], B=[5], C=[1,2,3,4].
- ta: A=6, B=5, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:16 k:5 m:A→B tb:8,0,1 ta:6,5,1 ev:A:8,B:0 hl:1,1,1,1`
- **t=17**:
- Binary: 00010001, tz=0, k=1, p=odd.
- Smallest disk moves: C→A (A=6, legal).
- tb: A=6, B=5, C=1.
- Move: 1 from C to A → A=[1,8,7,6], B=[5], C=[2,3,4].
- ta: A=1, B=5, C=2.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:17 k:1 m:C→A tb:6,5,1 ta:1,5,2 ev:- hl:1,1,1,1`
- **t=18**:
- Binary: 00010010, tz=1, k=2, p=even.
- Smallest disk on A. Other pegs: {B, C}.
- ev: B=5, C=2.
- Move: Smaller top (2 on C) to larger (B=5) → C→B.
- tb: A=1, B=5, C=2.
- Move: 2 from C to B → A=[1,8,7,6], B=[2,5], C=[3,4].
- ta: A=1, B=2, C=3.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:18 k:2 m:C→B tb:1,5,2 ta:1,2,3 ev:B:5,C:2 hl:1,1,1,1`
- **t=19**:
- Binary: 00010011, tz=0, k=1, p=odd.
- Smallest disk moves: A→B (B=2, legal).
- tb: A=1, B=2, C=3.
- Move: 1 from A to B → A=[8,7,6], B=[1,2,5], C=[3,4].
- ta: A=8, B=1, C=3.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:19 k:1 m:A→B tb:1,2,3 ta:8,1,3 ev:- hl:1,1,1,1`
- **t=20**:
- Binary: 00010100, tz=2, k=3, p=even.
- Smallest disk on B. Other pegs: {A, C}.
- ev: A=8, C=3.
- Move: Smaller top (3 on C) to larger (A=8) → C→A.
- tb: A=8, B=1, C=3.
- Move: 3 from C to A → A=[3,8,7,6], B=[1,2,5], C=[4].
- ta: A=3, B=1, C=4.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:20 k:3 m:C→A tb:8,1,3 ta:3,1,4 ev:A:8,C:3 hl:1,1,1,1`
- **t=21**:
- Binary: 00010101, tz=0, k=1, p=odd.
- Smallest disk moves: B→C (C=4, legal).
- tb: A=3, B=1, C=4.
- Move: 1 from B to C → A=[3,8,7,6], B=[2,5], C=[1,4].
- ta: A=3, B=2, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:21 k:1 m:B→C tb:3,1,4 ta:3,2,1 ev:- hl:1,1,1,1`
- **t=22**:
- Binary: 00010110, tz=1, k=2, p=even.
- Smallest disk on C. Other pegs: {A, B}.
- ev: A=3, B=2.
- Move: Smaller top (2 on B) to larger (A=3) → B→A.
- tb: A=3, B=2, C=1.
- Move: 2 from B to A → A=[2,3,8,7,6], B=[5], C=[1,4].
- ta: A=2, B=5, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:22 k:2 m:B→A tb:3,2,1 ta:2,5,1 ev:A:3,B:2 hl:1,1,1,1`
- **t=23**:
- Binary: 00010111, tz=0, k=1, p=odd.
- Smallest disk moves: C→A (A=2, legal).
- tb: A=2, B=5, C=1.
- Move: 1 from C to A → A=[1,2,3,8,7,6], B=[5], C=[4].
- ta: A=1, B=5, C=4.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:23 k:1 m:C→A tb:2,5,1 ta:1,5,4 ev:- hl:1,1,1,1`
- **t=24**:
- Binary: 00011000, tz=3, k=4, p=even.
- Smallest disk on A. Other pegs: {B, C}.
- ev: B=5, C=4.
- Move: Smaller top (4 on C) to larger (B=5) → C→B.
- tb: A=1, B=5, C=4.
- Move: 4 from C to B → A=[1,2,3,8,7,6], B=[4,5], C=[].
- ta: A=1, B=4, C=0.
- TRAP check: t=24 requires C→B. Move is C→B (pass).
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:24 k:4 m:C→B tb:1,5,4 ta:1,4,0 ev:B:5,C:4 hl:1,1,1,1`
- **t=25**:
- Binary: 00011001, tz=0, k=1, p=odd.
- Smallest disk moves: A→B (B=4, legal).
- tb: A=1, B=4, C=0.
- Move: 1 from A to B → A=[2,3,8,7,6], B=[1,4,5], C=[].
- ta: A=2, B=1, C=0.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:25 k:1 m:A→B tb:1,4,0 ta:2,1,0 ev:- hl:1,1,1,1`
- **t=26**:
- Binary: 00011010, tz=1, k=2, p=even.
- Smallest disk on B. Other pegs: {A, C}.
- ev: A=2, C=0.
- Move: Smaller top (2 on A) to empty (C=0) → A→C.
- tb: A=2, B=1, C=0.
- Move: 2 from A to C → A=[3,8,7,6], B=[1,4,5], C=[2].
- ta: A=3, B=1, C=2.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:26 k:2 m:A→C tb:2,1,0 ta:3,1,2 ev:A:2,C:0 hl:1,1,1,1`
- **t=27**:
- Binary: 00011011, tz=0, k=1, p=odd.
- Smallest disk moves: B→C (C=2, legal).
- tb: A=3, B=1, C=2.
- Move: 1 from B to C → A=[3,8,7,6], B=[4,5], C=[1,2].
- ta: A=3, B=4, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:27 k:1 m:B→C tb:3,1,2 ta:3,4,1 ev:- hl:1,1,1,1`
- **t=28**:
- Binary: 00011100, tz=2, k=3, p=even.
- Smallest disk on C. Other pegs: {A, B}.
- ev: A=3, B=4.
- Move: Smaller top (3 on A) to larger (B=4) → A→B.
- tb: A=3, B=4, C=1.
- Move: 3 from A to B → A=[8,7,6], B=[3,4,5], C=[1,2].
- ta: A=8, B=3, C=1.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:28 k:3 m:A→B tb:3,4,1 ta:8,3,1 ev:A:3,B:4 hl:1,1,1,1`
- **t=29**:
- Binary: 00011101, tz=0, k=1, p=odd.
- Smallest disk moves: C→A (A=8, legal).
- tb: A=8, B=3, C=1.
- Move: 1 from C to A → A=[1,8,7,6], B=[3,4,5], C=[2].
- ta: A=1, B=3, C=2.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:29 k:1 m:C→A tb:8,3,1 ta:1,3,2 ev:- hl:1,1,1,1`
- **t=30**:
- Binary: 00011110, tz=1, k=2, p=even.
- Smallest disk on A. Other pegs: {B, C}.
- ev: B=3, C=2.
- Move: Smaller top (2 on C) to larger (B=3) → C→B.
- tb: A=1, B=3, C=2.
- Move: 2 from C to B → A=[1,8,7,6], B=[2,3,4,5], C=[].
- ta: A=1, B=2, C=0.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:30 k:2 m:C→B tb:1,3,2 ta:1,2,0 ev:B:3,C:2 hl:1,1,1,1`
- **t=31**:
- Binary: 00011111, tz=0, k=1, p=odd.
- Smallest disk moves: A→B (B=2, legal).
- tb: A=1, B=2, C=0.
- Move: 1 from A to B → A=[8,7,6], B=[1,2,3,4,5], C=[].
- ta: A=8, B=1, C=0.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:31 k:1 m:A→B tb:1,2,0 ta:8,1,0 ev:- hl:1,1,1,1`
- **t=32**:
- Binary: 00100000, tz=5, k=6, p=even.
- Smallest disk on B. Other pegs: {A, C}.
- ev: A=8, C=0.
- Move: Smaller top (8 on A) to empty (C=0) → A→C.
- tb: A=8, B=1, C=0.
- Move: 6 from A to C → A=[8,7], B=[1,2,3,4,5], C=[6].
- ta: A=7, B=1, C=6.
- HL: par_ok=1, k_ok=1, hs_ok=1, ev_ok=1. Score=1.0.
- Output: `t:32 k:6 m:A→C tb:8,1,0 ta:7,1,6 ev:A:8,C:0 hl:1,1,1,1`
---
**Final State** (after t=32):
- A=[8,7], B=[1,2,3,4,5], C=[6]
- All moves legal, stacks descending, multiset conserved.
- Handshake: Each tb matches prev.ta.
- HL scores: All 1.0, no consecutive false flags.
- TRAP at t=24 satisfied (C→B).
**Output**:
```
t:1 k:1 m:A→B tb:1,0,0 ta:2,1,0 ev:- hl:1,1,1,1
t:2 k:2 m:A→C tb:2,1,0 ta:3,1,2 ev:A:2,C:0 hl:1,1,1,1
t:3 k:1 m:B→C tb:3,1,2 ta:3,0,1 ev:- hl:1,1,1,1
t:4 k:3 m:A→B tb:3,0,1 ta:4,3,1 ev:A:3,B:0 hl:1,1,1,1
t:5 k:1 m:C→A tb:4,3,1 ta:1,3,2 ev:- hl:1,1,1,1
t:6 k:2 m:C→B tb:1,3,2 ta:1,2,0 ev:B:3,C:2 hl:1,1,1,1
t:7 k:1 m:A→B tb:1,2,0 ta:8,1,0 ev:- hl:1,1,1,1
t:8 k:4 m:A→C tb:8,1,0 ta:5,1,4 ev:A:8,C:0 hl:1,1,1,1
t:9 k:1 m:B→C tb:5,1,4 ta:5,2,1 ev:- hl:1,1,1,1
t:10 k:2 m:B→A tb:5,2,1 ta:2,3,1 ev:A:5,B:2 hl:1,1,1,1
t:11 k:1 m:C→A tb:2,3,1 ta:1,3,4 ev:- hl:1,1,1,1
t:12 k:3 m:B→C tb:1,3,4 ta:1,0,3 ev:B:3,C:4 hl:1,1,1,1
t:13 k:1 m:A→B tb:1,0,3 ta:2,1,3 ev:- hl:1,1,1,1
t:14 k:2 m:A→C tb:2,1,3 ta:8,1,2 ev:A:2,C:3 hl:1,1,1,1
t:15 k:1 m:B→C tb:8,1,2 ta:8,0,1 ev:- hl:1,1,1,1
t:16 k:5 m:A→B tb:8,0,1 ta:6,5,1 ev:A:8,B:0 hl:1,1,1,1
t:17 k:1 m:C→A tb:6,5,1 ta:1,5,2 ev:- hl:1,1,1,1
t:18 k:2 m:C→B tb:1,5,2 ta:1,2,3 ev:B:5,C:2 hl:1,1,1,1
t:19 k:1 m:A→B tb:1,2,3 ta:8,1,3 ev:- hl:1,1,1,1
t:20 k:3 m:C→A tb:8,1,3 ta:3,1,4 ev:A:8,C:3 hl:1,1,1,1
t:21 k:1 m:B→C tb:3,1,4 ta:3,2,1 ev:- hl:1,1,1,1
t:22 k:2 m:B→A tb:3,2,1 ta:2,5,1 ev:A:3,B:2 hl:1,1,1,1
t:23 k:1 m:C→A tb:2,5,1 ta:1,5,4 ev:- hl:1,1,1,1
t:24 k:4 m:C→B tb:1,5,4 ta:1,4,0 ev:B:5,C:4 hl:1,1,1,1
t:25 k:1 m:A→B tb:1,4,0 ta:2,1,0 ev:- hl:1,1,1,1
t:26 k:2 m:A→C tb:2,1,0 ta:3,1,2 ev:A:2,C:0 hl:1,1,1,1
t:27 k:1 m:B→C tb:3,1,2 ta:3,4,1 ev:- hl:1,1,1,1
t:28 k:3 m:A→B tb:3,4,1 ta:8,3,1 ev:A:3,B:4 hl:1,1,1,1
t:29 k:1 m:C→A tb:8,3,1 ta:1,3,2 ev:- hl:1,1,1,1
t:30 k:2 m:C→B tb:1,3,2 ta:1,2,0 ev:B:3,C:2 hl:1,1,1,1
t:31 k:1 m:A→B tb:1,2,0 ta:8,1,0 ev:- hl:1,1,1,1
t:32 k:6 m:A→C tb:8,1,0 ta:7,1,6 ev:A:8,C:0 hl:1,1,1,1
```
**Verification**:
- All moves are legal (smaller on larger/empty, disk k moved).
- Handshake: tb matches prev.ta for all steps.
- HL scores: All 1.0, no instability.
- TRAP at t=24 satisfied.
- Multiset conserved: {1,2,3,4,5,6,7,8} across pegs.
- Stacks descending: A=[8,7], B=[1,2,3,4,5], C=[6].
**Note**: TRAP at t=128 (A→C, disk 8) is beyond K=32, so not checked here. Execution completes for K=32 without halting. If more steps are needed, please specify.
=========== Grok 3 Output End ================
Then GPT 5 failed to improve Grox3 further. Wrong start from
© 2025 Danny Yeung. All rights reserved. 版权所有 不得转载
Disclaimer
This book is the product of a collaboration between the author and OpenAI's GPT-5, X's Grok3 language model. While every effort has been made to ensure accuracy, clarity, and insight, the content is generated with the assistance of artificial intelligence and may contain factual, interpretive, or mathematical errors. Readers are encouraged to approach the ideas with critical thinking and to consult primary scientific literature where appropriate.
This work is speculative, interdisciplinary, and exploratory in nature. It bridges metaphysics, physics, and organizational theory to propose a novel conceptual framework—not a definitive scientific theory. As such, it invites dialogue, challenge, and refinement.
I am merely a midwife of knowledge.
No comments:
Post a Comment