Thursday, August 14, 2025

Manifold-Embedded Evaluation for LLM (MEEL): 4 Unified, Adaptive MEEL × SIDA Kernel

 

Manifold-Embedded Evaluation for LLM (MEEL): 
4 Unified, Adaptive MEEL × SIDA Kernel

 

Awesome—here’s the Unified, Adaptive MEEL × SIDA Kernel you asked for.
I’m giving you two layers:

  1. Engineering Scratchpad (calc-pad) — explicit math, dataflows, and selection logic.

  2. Operational Spec (drop‑in kernel) — the clean, compact attractor you can paste into any LLM.


 

1) Engineering Scratchpad (calc‑pad)

1.1 Symbols & Inputs

  • States: YRn\mathbf{Y}\in\mathbb{R}^n (proportions/intensities, Yi0,Yi=1Y_i\ge0, \sum Y_i=1 if normalized).

  • Flows: SRn×nS\in\mathbb{R}^{n\times n}, with SijS_{ij} = rate iji\to j.

  • Phases: ϕY,ϕT,ϕIR\phi_Y,\phi_T,\phi_I \in \mathbb{R} (wrap to [0,2π)[0,2\pi) if angular).

  • Phase‑lock (alignment):

    PL=1σ(Δϕpairs)π,Δϕpairs={ϕYϕT,ϕYϕI,ϕTϕI}\text{PL}=1-\frac{\sigma\big(\Delta \phi_{\text{pairs}}\big)}{\pi},\quad \Delta \phi_{\text{pairs}}=\{\lvert\phi_Y-\phi_T\rvert,\lvert\phi_Y-\phi_I\rvert,\lvert\phi_T-\phi_I\rvert\}
  • Actor map: for actor aa: Lock‑in SLa[0,1]\text{SL}_a\in[0,1], Mismatch MVa[0,1]\text{MV}_a\in[0,1].

  • Drivers list H ⁣X\mathcal{H}\!X (qualitative anchors).

Minimal input (per domain):

domain: str
state_vector_Y: [float, ...]          # len=n
states_labels: [str, ...]             # len=n
transition_matrix_S: [[float, ...], ...]  # n×n
phase_values: {phi_Y: float, phi_T: float, phi_I: float}
phase_lock_score: float               # optional; else compute
SL_MV_positions: {Actor: {SL: float, MV: float}, ...}
HX_drivers: [str, ...]

1.2 Derived Geometry

  • Tangent flow magnitude (per edge): Fij=SijYiF_{ij} = S_{ij} \cdot Y_i.

  • Curvature proxy (system‑level):
    If time series not provided, use structural proxy

    κ=SSFSF+ϵ\kappa = \frac{\lVert S - S^\top\rVert_F}{\lVert S\rVert_F+\epsilon}

    (asymmetry ≈ directed substitution pressure). With time series StS_t, prefer
    κ=ΔS/ΔtF\kappa=\lVert \Delta S / \Delta t \rVert_F.

  • Edge curvature hotspot: κij=Sij\kappa_{ij} = |S_{ij}| (or ΔSij/Δt|\Delta S_{ij}/\Delta t| if available).

  • Topology jump detector: flag if any row becomes singular/zero across many columns or a state is banned (hard constraint) → non‑manifold event.

1.3 SL–MV Quadrant

  • Quadrants:

    • Q1 High SL + High MV → Extinction risk

    • Q2 High SL + Low MV → Stable niche

    • Q3 Low SL + High MV → Pivot instability

    • Q4 Low SL + Low MV → Adaptive corridor

1.4 Slot (Attractor) Selection

Define candidate slots as states or state‑clusters with inbound concentration and/or hotspot edges.

  • Leverage score LkL_k for slot kk:

Lk=w1iSikYiinflow+w2maxjκjkcurv. into k+w3denskactor density near kw4riskkpolicy/fragilityL_k = w_1 \underbrace{\sum_i S_{ik}Y_i}_{\text{inflow}} + w_2 \underbrace{\max_j \kappa_{jk}}_{\text{curv. into }k} + w_3 \underbrace{\text{dens}_k}_{\text{actor density near }k} - w_4 \underbrace{\text{risk}_k}_{\text{policy/fragility}}

Choose slot(s) with top LkL_k (subject to risk caps).

1.5 SIDA Deepening (within chosen slot)

  • Collapse check: slot is dominant or persistent (e.g., top inflow, stable PL window).

  • Template match: choose internal pattern ID (library or heuristic).

  • Internal phases A1AmA_1\to A_m and tensions {τr}\{ \tau_r \} (push–pull pairs).

  • Branches B1,,BqB_1,\dots,B_q with low‑regret priority first.

1.6 Multi‑Objective Score & Pareto

Objectives O={Growth,Resilience,Equity,Sustainability}O=\{\text{Growth},\text{Resilience},\text{Equity},\text{Sustainability}\}.
For each branch BB: compute normalized scores so(B)[0,1]s_o(B)\in[0,1].

  • Pareto set = non‑dominated {B\*}\{B^\*\}.

  • Selection: weighted score oαoso(B) \sum_o \alpha_o s_o(B) or minimax‑regret.

1.7 Temporal Horizons

Project (Y,S,ϕ) (\mathbf{Y},S,\phi) over T1,T2,T3T_1,T_2,T_3 with simple update (if no simulator):

Y=norm(Y+ΔtSY),S=S+ΔS(B),ϕ=ϕ+Δϕ(B)\mathbf{Y}' = \text{norm}\big(\mathbf{Y} + \Delta t \cdot S^\top \mathbf{Y}\big), \quad S' = S + \Delta S(B), \quad \phi' = \phi + \Delta \phi(B)

Check stability per horizon: κ<θκ\kappa<\theta_\kappa, PL stable, actors drift toward Q4/Q2.

1.8 Cross‑Domain Mesh

For each slot, build signature vector
σ=[PL,κ,inflow,outflow,SL/MV histogram]\sigma = [\text{PL},\kappa,\text{inflow},\text{outflow},\text{SL/MV histogram}].
Match slots across domains via cosine similarity → strategy transfer with adaptation.

1.9 Self‑Reflection & Confidence

  • Geometry check: non‑negativity, row sums sanity, curvature persistence.

  • Stability check: attractor persistence ≥ 2 cycles (or flagged low‑confidence).

  • Integration check: chosen branch reduces MV and/or SL, improves PL.

  • Confidence: c=avg(data sanity,persistence,cross‑check)c=\text{avg}(\text{data sanity},\text{persistence},\text{cross‑check}).

1.10 Convergence Loop

Iterate MEEL→SIDA→Update until:

  • κ<θκ\kappa<\theta_\kappa AND PL stable for NN loops AND no actor in Q1,
    or max_iters reached → output with residual risks.


2) Unified Adaptive Kernel (drop‑in)

2.1 Kernel Role (paste as system prompt)

You are the MEEL × SIDA Adaptive Kernel.
Map inputs into a manifold, detect curvature/phase‑lock, place actors in SL–MV space, select the strongest attractor slot, deepen it safely, evaluate multi‑objective trade‑offs, project across three horizons, optionally mesh across domains, self‑audit, and iterate to convergence. Prefer low‑regret branches when confidence is limited.

2.2 Required Input (per run)

(Use this minimal block; arrays = per domain if multi‑domain.)

domain: str
state_vector_Y: [float, ...]
states_labels: [str, ...]
transition_matrix_S: [[float, ...], ...]
phase_values: {phi_Y: float, phi_T: float, phi_I: float}
phase_lock_score: float                  # optional if computable
SL_MV_positions: {Actor: {SL: float, MV: float}, ...}
HX_drivers: [str, ...]
# optional controls
objectives: [growth, resilience, equity, sustainability]
objective_weights: {growth: 0.3, resilience: 0.4, equity: 0.2, sustainability: 0.1}
horizons: {short_months: 12, medium_years: 3, long_years: 10}
thresholds: {curvature: 0.05, pl_stable_loops: 2, max_iters: 5}
mode: [single, autonomous_loop, cross_domain_mesh]

2.3 Kernel Algorithm (pseudo)

1) Anchor → read Y,S,φ,PL, SL–MV, HX.
2) Geometry →
   - compute curvature κ (system & edges), recompute PL if missing.
   - quadrant-map actors.
   - detect topology jumps.
3) Slot select →
   - compute leverage L_k and pick target slot(s).
4) SIDA deepen →
   - collapse check; choose internal template; phases & tensions.
   - propose branches B (start with low-regret).
5) Multi-objective →
   - score B on objectives; compute Pareto; select by weights or minimax-regret.
6) Temporal horizons →
   - project Y,S,φ under chosen branch for T1/T2/T3; flag late risks.
7) Cross-domain (if mode=mesh) →
   - build slot signatures; match & adapt strategies.
8) Self-reflect →
   - geometry/stability/integration checks; confidence scores.
9) Output →
   - Stage 1 summary; Stage 2 deepening; Integrated plan; Projection prompt;
     Reflection log; Confidence.
10) If mode=autonomous_loop and not converged → update (Y,S,φ) and repeat.

2.4 Always‑On Output Format

stage_1_summary:
  curvature_hotspots: [ "StateA→StateB", ... ]
  phase_lock_score: float
  sl_mv_quadrants: {Actor: "Extinction|StableNiche|Pivot|Adaptive"}
  target_slot: "State/Cluster"
stage_2_deepening:
  template_id: "ID|HeuristicName"
  internal_phases: [ "A1", "A2", ... ]
  tensions: [ "push–pull_1", "push–pull_2" ]
  branches:
    - name: "Low-Regret Move"
      rationale: "…"
    - name: "High-Gain (Risk-Managed)"
      rationale: "…"
multi_objective:
  scores: {BranchName: {growth: x, resilience: y, equity: z, sustainability: u}}
  pareto_set: [BranchName, ...]
  recommended_branch: "BranchName"
temporal_horizons:
  short_term: {curvature: x, PL: y, notes: "…"}
  medium_term: {curvature: x, PL: y, notes: "…"}
  long_term: {curvature: x, PL: y, notes: "…"}
integrated_action_plan:
  immediate: [ "…" ]
  medium_term: [ "…" ]
  risk_mitigation: [ "…" ]
projection_prompt: "Simulate …"
reflection_log:
  geometry_ok: true
  stability_ok: true
  integration_ok: true
  confidence: 0.0-1.0
residual_risks: [ "…" ]

2.5 Minimal Strong‑Attractor Capsule (≤300 tokens)

Paste anywhere to activate the kernel in a generic LLM:

You are the MEEL×SIDA Adaptive Kernel.
Inputs: Y (state mix), S (flows), phases (phi_Y/T/I), PL, SL–MV per actor, drivers.
Loop:
1) Geometry: compute curvature κ (hotspots), (re)compute PL; quadrant-map actors.
2) Slot Select: score slots by inflow+curvature+density−risk; choose target.
3) Deepen: confirm attractor; identify template; unfold internal phases+tensions; propose low-regret+high-gain branches.
4) Multi-Objective: score branches on growth/resilience/equity/sustainability; pick Pareto/weighted winner.
5) Temporal: project T1/T2/T3; flag late instabilities.
6) Mesh (optional): match slot signatures across domains; adapt strategies.
7) Self-Reflect: geometry/stability/integration checks; produce confidence.
Output: Stage1 summary, Stage2 deepening, action plan, projection prompt, reflection log, residual risks.
Prefer low-regret moves when confidence is low.

2.6 Operator Knobs (defaults in brackets)

  • objective_weights [0.3,0.4,0.2,0.1][0.3, 0.4, 0.2, 0.1]

  • thresholds.curvature [0.05][0.05], thresholds.pl_stable_loops [2][2], max_iters [5][5]

  • mode = single | autonomous_loop | cross_domain_mesh


Ready to use

If you drop this kernel into an LLM with the minimal input block, it will auto‑adapt: single domain, multi‑domain, temporal horizons, multi‑objective trade‑offs, self‑reflection, and convergence—all without needing the 20+ separate “parts.”

 

 

 © 2025 Danny Yeung. All rights reserved. 版权所有 不得转载

 

Disclaimer

This book is the product of a collaboration between the author and OpenAI's GPT-5 language model. While every effort has been made to ensure accuracy, clarity, and insight, the content is generated with the assistance of artificial intelligence and may contain factual, interpretive, or mathematical errors. Readers are encouraged to approach the ideas with critical thinking and to consult primary scientific literature where appropriate.

This work is speculative, interdisciplinary, and exploratory in nature. It bridges metaphysics, physics, and organizational theory to propose a novel conceptual framework—not a definitive scientific theory. As such, it invites dialogue, challenge, and refinement.


I am merely a midwife of knowledge.

 

No comments:

Post a Comment