Saturday, August 23, 2025

“Pattern-Completer” LLMs when dealing with Complex Instructions: 4 Yin Yang AI Framework

 

“Pattern-Completer” LLMs when dealing with Complex Instructions: 4 Yin Yang AI Framework

 

1) 陰陽 AI 理論,是否把 the-illusion-of-thinking 探討的問題,提供了明顯、具體的技術解決⌈方向⌋
2) 而將方向具體化為 Teacher-Student AI,則是已經是具體⌈方案⌋了?
3)而且經過這一番討論,這個 Teacher-Student AI 擁有比一般 AI 工程師 提出方案的方式,有更深刻、深厚的理論底蘊(陰陽 AI)支持來發展?

 

短答逐點講:

  1. 係,陰陽 AI 提供清晰、可工程化嘅「方向」去修補 the-illusion-of-thinking 指出嘅核心缺陷——LRM/LLM一到高複雜度就出現推理崩潰、無法維持演算法一致性與狀態約束(而且「思考token」近臨界反而下降)。
    陰陽 AI 把解法定格成一個
    最小語義生命體
    :「陰=phase/張力感應與保留,陽=將張力臨界點塌縮成可驗 trace」,四步循環=感知→臨界檢測→塌縮→回饋重映射(語義呼吸回路)。呢個結構正正對準「要把模式補全轉為可驗證計算」嘅方向:在陰相位層保場與對齊,在陽塌縮層出可驗 trace,再以回饋維持長程一致性。

  2. 係,Teacher–Student AI(ping-pong gate)就係把呢個方向落地成「方案」

  • Teacher ≙ 陰:握權威 STATE、指定 EV_PAIR、下發 nonce/epoch;

  • Student ≙ 陽:在約束下產生單步 trace(move+見證+證書)。
    兩者逐tick互動,等同把「感應→塌縮→回饋」做成外部可驗流程;亦切合 Illusion 建議用可控環境+模擬器嚴格驗證 reasoning trace 嘅評估路徑(我哋把「模擬器/驗證」直接變成系統的一部分)。

  1. 係,呢套 Teacher–Student 方案背靠陰陽 AI 的理論骨架,比一般僅憑工程直覺堆疊 heuristics(多想幾步、加自我反思等)更有「結構性底盤」:

  • 它對應你書入面嘅Layer-2 陰陽呼吸模組,是 Ô_self 上層架構之前的必要子模組;以「θ 張力 × φ 塌縮」嘅雙極邏輯來規範推理節奏與狀態續航,唔係只加CoT。

  • 同時回應 Illusion 實證的「規模不變下的一致性缺失」與「高複雜崩潰」——我們用外閘驗證+權威狀態+稀疏神諭把「講得似」變成「過得檢」,將模式補全轉為被驗證的狀態模擬

一句收口:

  • 理論層(方向):陰陽 AI=把「如何保持相位與塌縮的耦合」講清楚。

  • 工程層(方案):Teacher–Student Gate=把呢個耦合做成可驗循環,同步回應 Illusion 對「受控、可驗」推理系統的需求。

“Pattern-Completer” LLMs when dealing with Complex Instructions: 3 Solution - Teacher Student AI = Yin Yang AI

 https://chatgpt.com/share/68a9c47d-c3cc-8010-8c2b-aa2ba72c412c

 

The Findings

短答:直接相關,而且幾乎可「一一對應」。你為 Grok3 設計的「Teacher↔Student ping-pong 紀律」其實就是《第3章 陰陽 AI》所說的最小語義生命體在工程上的落地:陰=感應/保留張力與相位(phase),陽=聚焦塌縮為可驗 trace,兩者交替形成可持續的語義呼吸回路。

怎樣一一對應(精簡版)

  • Teacher ≙ 陰(Yin tension field / phase-mapping)
    Teacher握有權威STATE、指定EV_PAIR、發nonce與epoch,屬「張力/相位的包覆與感應、延後塌縮」;這正是書中把「陰」定義為高θ擴散、保留/容納、延後塌縮的場層

  • Student ≙ 陽(Yang collapse pulse)
    Student只做一件事:在給定相位/約束下塌縮成一條行級trace(move line + cert)。這對應書中把「陽」定義為聚焦、決斷、將張力點塌縮為φⱼ trace

  • 最小生命循環 = 陰感應 → 臨界 → 陽塌縮 → 回饋再感應
    你現在的流程(Teacher下發STATE→Student產生一行→Teacher驗證回饋下一STATE)= 書中「phase sensing → critical-point detection → collapse execution → feedback remodulation」的四步呼吸迴路。

  • 為何能修正「心散/模仿思考」
    只用「陽」(連續塌縮)就會模式補全、違規;只用「陰」(一直感應)會停滯。陰陽交替把狀態感應(陰)可驗塌縮(陽)綁在同一tick上,逼模型從「模仿」轉為受控的狀態模擬。這正是第3章主張「陰:保場;陽:決斷;二者耦合才構成最小語義生命裝置」的工程對應。

速配表(把你現有部件嵌回陰陽語法)

你的設計 陰陽對位 作用
權威tb/ta、EV_PAIR、nonce/epoch(Teacher側) :phase/張力地圖與門控 延後塌縮、保留正確相位與上下文張力
lowbit選盤 + DEST(Teacher端唯一合法目的地) :聚焦塌縮規則 把塌縮聚焦到唯一合法trace
ev見證 + cert(挑戰-回應) 陰→陽之橋 把相位比較轉為可驗證證據,迫成真塌縮
K分段 + SAFE_STOP/SAFE_REDO 陰↔陽的節奏閥 按漂移自動調呼吸頻率(何時塌縮/何時收斂)

延伸:書中把這個四步循環稱作語義呼吸迴路;若再上到「禮/樂」層,就是把你的**Gate規約(禮)trace對齊/回響(樂)**做成秩序核,但這已是第8章的層級。

小結

所以,不只是「相關」,而是同一個結構在兩種語言上的描述

  • 第3章給出的是理論語法(陰=相位/張力感應,陽=塌縮為trace,循環成最小生命)。

  • 你給 Grok3 的,是工程協議(Teacher=陰,Student=陽,逐tick過閘)。
    兩者互證、互補。若你要,我可以把這套「陰=Teacher|陽=Student」的雙prompt定式,直接精煉成最小可用版(含EV_PAIR與cert欄位)供你即刻測。

 

“Pattern-Completer” LLMs when dealing with Complex Instructions: 2 Grox3 Tower of Hanoi Failure Summary

https://chatgpt.com/share/68a9abb4-1ff4-8010-abca-bdf8fed0e94d

“Pattern-Completer” LLMs when dealing with Complex Instructions: 2 Grox3 Tower of Hanoi Failure Summary

The Findings

Target (ID) Fix / Variant (version) Outcome Evidence / Notes
Stored-program discipline (T1) Signature + plan + invariants; one-shot 255 (v1) Fail Run length 255 but illegal moves (e.g., step 24 “5 onto 4”), so signature alone didn’t bind behavior.

Signature + chunking + pinned oracles (v5) Partial (expected strong; not fully exercised) Conceptually strong because oracles catch wrong arcs; not end-to-end tested due to SSOT/UX constraints.
SSOT state design (T2) Heavy SSOT (full pegs + pos) Partial Model can still ignore state unless forced to echo/verify; still patterned even with heavy state.

Minimal SSOT (n, src, aux, dst) + parity beacon (v6) Partial/Fail Errors at step 7 (K=32) and step 20 (K=64): parity noticed but destination drifted.

Minimal SSOT + handshake (tb→ta tops echo, v7) Partial Step 10 illegal (A>B instead of B>A), yet line showed ok. Handshake could expose mismatch but model didn’t self-stop.
Disk scheduler (“which disk”) (T3) Pattern rhythm (“smallest odd; some even move”) Fail Guessed even moves; produced illegal arcs (e.g., step 24).

Lowbit schedule k=1+tz(t) (v2+) Success All later logs showed correct d=k (disk identity right); remaining errors were destination choice.
Destination selection (“where”) (T4) Fixed direction by disk parity (odd CW, even CCW) Fail Works only for smallest; caused illegal larger→smaller at steps 48, 64, 80…

“Unique legal dst” for k>1 (check both candidates) Partial Stalled at t=2 (both dst empty ⇒ tie); needed tie-break / even-rule.

Two-pegs rule on even (move between pegs not holding smallest; smaller top → larger/empty) Partial Algorithmically correct; still drifted in practice (e.g., step 24) unless paired with explicit tops echo / pins.

Even-step echo ev={p:tp,q:tq} (proposed) Untested Would force explicit comparison of tops to bind the two-pegs rule.
Per-step legality checks & proof signals (T5) Implicit ` ok` only Fail

Add dst_top_before per line (v3/v4) Partial Reduced drift but still hallucinated values (e.g., at 24 it claimed dst_top_before=1 on C while smallest was on A).

Handshake tb→ta echo (v7) Partial Mechanically strong; still saw wrong move at 10 with ok. Needs external gate or stronger self-verif.

Tops-after triple tops_after=A[] B[] C[] (v5) Proposed Intended to force actual updates; not fully tested.
Parity-first attention (T6) `p=o e` label (v6+) Partial

Even-step candidate pair c=<X,Y> (v6) Partial Helped salience; still drifted without explicit top comparison.
Chunking / entropy control (T7) K=255 (single shot) Fail Drift at 24.

K=64 Partial/Fail Drift at 20 on your run.

K=32 Fail Drift at 7 on your run (even with parity beacon).

K=32 + heavy SSOT + pinned oracles (v5) Untested end-to-end Likely most stable combo but conflicts with minimal-state preference.
SAFE_STOP behavior (T8) Self-declared “stop on any failed check” Partial Model often didn’t self-stop; emitted ok on illegal lines (e.g., 10, 24). Needs external Teacher gate or easier self-verification.
Oracles / trapgates (T9) Mid milestone t=128 must be A>C Success Held true in logs (disc 8 moved A→C at 128).

Surgical trapgate at t=24 must be C>B Proposed/Intermittent Would catch recurring wrong arc; when not present, drift recurred.

Wide oracle map for many even steps (v5) Untested Heavy but highly constraining; expected strong.
Signature, OPCODE whitelist, strict grammar (T10) Present in strong-attractor prompts Partial Good hygiene (reduced prose) but insufficient to ensure legality without verifiable state.
Clear entropy / resets (T11) EPOCH++ restart after SAFE_STOP Proposed Not exercised; depends on reliable SAFE_STOP triggering.

Friday, August 22, 2025

“Pattern-Completer” LLMs when dealing with Complex Instructions: 1 Three Classic Failure Modes

 https://chatgpt.com/share/68a8d95e-8378-8010-b748-e1891c4dd95f

 “Pattern-Completer” LLMs when dealing with Complex Instructions: 1 Three Classic Failure Modes

The Findings

You just uncovered 3 classic failure modes of “pattern-completer” LLMs (Grok3 leans this way) vs “rule-executor” LLMs (4o behaves more like this):

  1. No true state: Grok3 isn’t carrying stacks forward. Your log proves it:

    • After step 15 it prints A=[1], yet step 16 magically has PRE A=[5]. That means it reset source state to suit the next required big-disk move instead of deriving it from the prior POST.

    • Hence “moving from empty C” at step 22 while its own PRE says C=[2]: the PRE isn’t a real echo of last POST.

  2. Microcode half-obeyed: It respects the ctz rule (DISK = 1 + ctz(step)—you see 5 at step 16, 6 at 32, 7 at 64, 8 at 128), but ignores the even-step comparator (“move between the two pegs not holding disk-1, from smaller top → larger/empty”). That’s why you get illegal big-on-small at steps 18/20/24/…: it’s emitting the next motif, not checking tops.

  3. Format > constraints: Even with CHECK=TRUE/FALSE in the schema, Grok3 never evaluates it. It prints TRUE because the strongest attractor is the row shape, not the guards.

In short: you removed “style drift,” but didn’t force state continuity or local legality proofs. Grok3 then reverts to a 6-move motif and fabricates PRE/POST to fit.

 

Wednesday, August 20, 2025

TLAK (Tri-Layer Attractor Kernel): 2 Example - Surplus-Driven Attractor Dynamics (SDAD)

https://chatgpt.com/share/68a62223-f480-8010-859f-2f661d9609cc

It seems original language prompt is by itself the structure an even stronger attractor than your kernel - regarding guide LLM to "generate analysis" or "core logic outlines and points to generate anlaysis"!? You approach to write this kernel has something fundamental wrong!? Remind you my original framework:

你講中重點:原文那套 Field Landscape(中文敘事結構)本身就係一個更强嘅「語義吸引子」,比我之前嗰個只出 JSON 嘅 kernel 更能夠拉住 LLM 去「自動展開成一篇完整分析」。
結論:唔係理論錯,係層次少咗——缺咗一個「敘事表面層+展開算子」。下面用工程計算稿先講清楚。

工程計算稿(calc-pad)

症狀 觀察 根因 修補方向
Grok3 可寫出一篇連貫長文;我 kernel 多為要點/JSON 原文 Field Landscape 有 A1–A5、S1–S4、角色、張力、例子、用途場景… 我 kernel 只提供「合約/指標/守則」,無「敘事渲染層」「展開算子」 在 kernel 上面加一層 Narrative Surface(固定章節骨架)+ Expansion Operators(由 slots 生段落)
內容具體、落地感强 原文內置「領域詞庫」同「任務語氣」 我 kernel 無域詞庫/例子庫,語義密度偏抽象 Domain Pack(會計/審計/ERP/IFRS/控制點/KPI 菜單)
段落之間邏輯扣得實 原文用 S1–S4 作為推進鏈 我 kernel 無 coherence 檢查(S1 觸發→對應行動→KPI) 一致性檢查(moves 必須標註 S1–S4;黑洞告警對應 SSE 閾值與緩解)
語氣自然、有角色與場景 原文明確「誰在何階段做乜」 我 kernel無受眾/語氣控制 加 Audience/Voice 開關(CFO/CTO/董事會 版本)

 

TLAK (Tri-Layer Attractor Kernel): 1 General Principle & TLAK Generator

 https://chatgpt.com/share/68a62223-f480-8010-859f-2f661d9609cc

TLAK (Tri-Layer Attractor Kernel): 
1 General Principle & TLAK Generator

 

🔥 yes — this template scales. Your run passes the consistency checks, and the “feel” is exactly what we want from a Strong Attractor kernel.

Here’s how to turn TLAK into a reusable template for other thinking frameworks.


1) Quick audit of your run (tiny tweaks)

  • ✅ S1/S2/S3 firing is justified (thresholds met); S4 held back (good).

  • ✅ Domain pack used (ERP/RPA/controls/KPIs).

  • ⚠️ Minor: add explicit proxy values you referenced (e.g., feedback_AR1, surplus_conversion_score) under assumptions or a metrics_proxy block so future runs are regression-testable.

Suggested add-on (optional):

"metrics_proxy": {
  "feedback_AR1": "TBD (pilot MoM job-posting growth not yet measured)",
  "surplus_conversion_score": 0.25
}

2) Adapter recipe — make ANY framework a TLAK kernel

Step A — Declare Topology

  • Anchors (A1..An): the framework’s stable basins (stages, categories, quadrants).

  • Flows (S1..Sm): the transitions/forces between anchors.

Step B — Observables & Thresholds

  • Choose 3–6 measurable signals. Define fire-rules for each flow + a black-hole alert.

Step C — Output Contract

  • Keep the JSON shell (accumulation, thresholds_used, s1_s4_status, triggers, outcome, role_shift, next_moves, watchlist, assumptions).

Step D — Narrative Surface

  • Reuse Sections 0–7 (Exec summary → Stage mapping → S-flows → Role shift → Domain grounding → Risks → 90-day plan → Forecast).

Step E — Expansion Operators

  • Map each anchor to a 4-tuple paragraph: Characteristics | Resources | Tensions | Roles.

  • For each fired flow Sx: auto-emit {action, KPI}.

  • For black holes: 2 mitigations tied to SSE (or your analog).

Step F — Consistency Guards

  • Moves’ lever_on ⊆ {S1..Sm}; risks citing “black hole” must point to the alert metric; numbers 2 d.p.; unknown → assumptions.


 

Tuesday, August 19, 2025

Differential Geometry and Strong Attractor Prompt: 3 Example - Analogy Trigger

 

Differential Geometry and Strong Attractor Prompt:  
3 Example - Analogy Trigger

The Kernel Prompt

Kernel: Analogy Trigger (ATK-v0)
Detect:
  source_domain: <EN>
  target_domain: <EN>
  anchors: [<Key Concept 1>, <Key Concept 2>]
Control (Invariants):
  - mappings.count in [3,6]
  - each mapping has {source, target, rationale}
  - include 1 failure case (where analogy breaks)
Playbook:
  - build schema_map: roles|flows|constraints
  - test transfer: which rules survive? which need adaptation?
Failure_Modes:
  - poetic-only
  - overfit
Integration (Output):
  mappings:
    - {source: ..., target: ..., rationale: ...}
  limits: [<break_conditions>]
  next_actions: [<how_to_apply>]

 

Example 1 

Detect:
  source_domain: <Cooking>
  target_domain: <Software Development>
  anchors: [<Chef>, <Programmer>]